热—力作用下复合材料层合板的响应分析
[Abstract]:Composite materials have been widely used in aerospace, ship engineering, building engineering, vehicle manufacturing industry and mechanical engineering due to their excellent mechanical and physical properties. However, in the process of manufacturing, processing and using of composite materials, there are often severe temperature changes. Due to the different properties of laminated materials, significant temperature stress will occur in laminated plates. These thermal stresses will be large enough to cause excessive deformation of the structure, and even lead to the fracture, stripping and matrix destruction of laminated structure fibers. Therefore, in order to ensure the safety and reliability of composite laminates to the maximum extent, it is an important scientific problem to accurately predict the stress distribution in composite laminates under thermal loading. In this paper, the current situation of laminated plate theory is reviewed in detail, and the advantages and disadvantages of these theories are summarized. For laminated composite plates, the in-plane stress and transverse shear stress can be directly calculated by the constitutive equation. The theory achieves a good balance in efficiency and precision. Therefore, the work of this paper is based on this theory. Secondly, the global-local high-order shear deformation theory is derived in detail. Based on the initial displacement model of the global-local theory, the continuous condition of layered displacement, the continuous condition of transverse shear stress and the boundary condition of free surface stress are introduced. Finally, the final displacement model of global and local high-order shear deformation containing only 11 global displacement unknowns is obtained, which lays a theoretical foundation for the analysis of laminated plates under thermal load, force load and thermal-force load. According to the response analysis of laminated plates and sandwich plates under thermal load, the temperature field of laminated plates and the three-dimensional linear elastic solutions under thermal load are summarized. The analytical solution of simply supported laminated plates with four edges is given by using Navier's 's bipolar expansion method. Yeah, three layers, 0.r90.0.0.0.0.0.0.0.0.0.0. Four side simply supported laminated plates and 0./core/0 掳four side simply supported laminated plates are calculated, respectively. The thermal loads are distributed along the thickness, the thermal loads are distributed gradient, and the responses under the distributed thermal loads are solved by heat conduction. Compared with the published results of other scholars, the results show that the theory of global and local high order shear denaturation has obvious advantages in solving the thermal response analysis of composite laminated plates. At the same time, the thermal response of the laminated plate under the action of the temperature field calculated by the heat conduction equation is compared with that of the linear assumed temperature field. The results show that the assumption of an improper temperature field will lead to a large error in the thermal response of the laminated plate. Based on the effect of thermal load, the analytical solution of simply supported laminated plates with four edges under the action of thermal-force load is given, and the three-dimensional linear elastic solution of the laminated plate under the action of force load and thermal-force load is summarized. Numerical examples focus on the three layers of 0. / 90. The typical numerical examples of simply supported laminated plates with four edges subjected to force and thermal-mechanical loads are studied and compared with the results published by other scholars and the Abaqus finite element solution. The applicability and accuracy of the global-local high-order shear denaturation theory for the response analysis of composite laminated plates under thermal-mechanical loads are verified. Finally, by changing the direction and sequence of laminated laminates, the optimal design of laminated plates is carried out to reduce the interlaminar stress and improve the anti-delamination ability of composite materials. The optimization design is divided into two steps: the first step is to optimize the laying angle, and six typical laying angle combinations are designed; the second step is to optimize the laying sequence, based on the better laying angle combination found in the first step. Eight new schemes of different layering sequence are designed.
【学位授予单位】:东南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB33
【相似文献】
相关期刊论文 前10条
1 洪明,陈浩然;修复对含分层损伤复合材料层合板振动特性的影响[J];玻璃钢/复合材料;2002年03期
2 崔海涛,郝勇,温卫东;含孔复合材料层合板逐渐损伤破坏分析[J];理化检验(物理分册);2002年04期
3 魏玉卿,陈斌;缝纫对复合材料层合板分层屈曲的影响[J];重庆大学学报(自然科学版);2004年07期
4 刘芹,任建亭,姜节胜,郭运强,陈换过;复合材料层合板非线性热振动分析[J];动力学与控制学报;2005年01期
5 关志东;郭渊;;含缺陷的复合材料层合板低速冲击过程的有限元模拟[J];复合材料学报;2006年02期
6 吉桂秀;李娇颜;陈浩然;;多分层对复合材料层合板自振特性的影响[J];复合材料学报;2007年04期
7 贺跃进;张恒;;复合材料层合板裂纹诊断的实验研究[J];玻璃钢/复合材料;2008年02期
8 郭翔鹰;张伟;姚明辉;陈丽华;;复合材料层合板的混沌运动分析[J];振动与冲击;2009年06期
9 程小全;杨琨;胡仁伟;邹健;;缝合复合材料层合板拉伸疲劳损伤及其机理[J];力学学报;2010年01期
10 陈春露;刘文博;张璐;王荣国;隋晓东;郑达;;复合材料层合板分层疲劳性能研究进展[J];玻璃钢/复合材料;2012年01期
相关会议论文 前10条
1 吉桂秀;陈浩然;洪明;;含多个分层损伤复合材料层合板的自振特性研究[A];复合材料——基础、创新、高效:第十四届全国复合材料学术会议论文集(下)[C];2006年
2 卢智先;矫桂琼;王平安;朱胜利;;含分层损伤的复合材料层合板压缩力学行为的实验研究[A];复合材料——基础、创新、高效:第十四届全国复合材料学术会议论文集(下)[C];2006年
3 郭翔鹰;张伟;陈丽华;;二自由度复合材料层合板的非线性动力学分析[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(下)[C];2007年
4 郭翔鹰;张伟;姚明辉;陈丽华;;复合材料层合板的混沌运动分析[A];第八届全国动力学与控制学术会议论文集[C];2008年
5 郭翔鹰;张伟;陈丽华;;复合材料层合板动力学方程的混沌研究[A];第十五届全国复合材料学术会议论文集(下册)[C];2008年
6 郭翔鹰;张伟;;角铺设的复合材料层合板的动力学分析[A];现代数学和力学(MMM-XI):第十一届全国现代数学和力学学术会议论文集[C];2009年
7 郭翔鹰;张伟;;角铺设的复合材料层合板的混沌运动分析[A];中国力学学会学术大会'2009论文摘要集[C];2009年
8 郭翔鹰;张伟;;角铺设的复合材料层合板的混沌运动[A];第十二届全国非线性振动暨第九届全国非线性动力学和运动稳定性学术会议论文集[C];2009年
9 刘远东;;含分层损伤复合材料层合板的动力破坏分析[A];中国工程物理研究院科技年报(2003)[C];2003年
10 吕霞;周储伟;;复合材料层合板螺栓连接的数值模拟[A];中国力学大会——2013论文摘要集[C];2013年
相关博士学位论文 前10条
1 洪明;分层损伤复合材料层合板振动与声特性研究[D];大连理工大学;2003年
2 刘伟先;复合材料层合板真空辅助湿铺贴挖补修理分析方法研究[D];南京航空航天大学;2013年
3 刘志强;雷电环境下复合材料层合板电—磁—热—结构耦合效应研究[D];西北工业大学;2015年
4 曹俊;遗传算法及其在复合材料层合板设计中应用的研究[D];南京航空航天大学;2003年
5 吕书锋;轴向外伸悬臂复合材料层合板的非线性动力学研究[D];北京工业大学;2013年
6 徐颖;复合材料层合板冲击损伤及冲击后疲劳寿命研究[D];南京航空航天大学;2007年
7 杨加明;湿热环境下复合材料层合板的几何非线性分析[D];南京航空航天大学;2005年
8 任晓辉;复合材料层合板C~0型高阶锯齿理论[D];大连理工大学;2014年
9 张璐;含分层缺陷复合材料层合板分层扩展行为与数值模拟研究[D];哈尔滨工业大学;2012年
10 侯玉品;复合材料层合板铺层设计与离散结构选型优化方法研究[D];大连理工大学;2013年
相关硕士学位论文 前10条
1 郭文辉;复合材料层合板鸟撞动响应及损伤分析[D];郑州大学;2015年
2 胡成钲;FRP复合材料三角形夹芯桥面板的强度分析[D];南京理工大学;2015年
3 陶斐;复合材料层合板动力学建模与内共振研究[D];苏州大学;2015年
4 田立智;基于整体局部理论的复合材料层合板多体系统动力学研究[D];上海交通大学;2015年
5 简晓彬;复合材料层合板疲劳累积损伤数值模拟[D];哈尔滨工业大学;2015年
6 孙浩然;基于主动Lamb波的复合材料层合板冲击损伤识别研究[D];哈尔滨工业大学;2015年
7 刘英芝;复合材料层合板疲劳行为研究[D];哈尔滨工业大学;2015年
8 李洪朋;噪声载荷条件下复合材料层合板动力学响应分析及疲劳寿命预报[D];哈尔滨工业大学;2015年
9 杨宇航;复合材料层合板结构非局部渐进失效建模与有限元分析[D];浙江大学;2015年
10 杨述松;基于二次开发的复合材料优化技术研究[D];重庆理工大学;2015年
,本文编号:2358802
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2358802.html