二维材料的定量电子衍射及电子显微镜中的自动化数据处理
[Abstract]:Nano-science has made great achievements since it was put forward in the last century, which can not be separated from the development of electron microscope technology. In recent years, two-dimensional materials have been widely concerned by researchers because of their novel physical properties. In this paper, two parts of work have been completed by using two-dimensional materials as a breakthrough point and focusing on quantitative electron microscopy (QEM). The first part: layer thickness has an important influence on the physical properties of two-dimensional materials, especially for two-dimensional materials with single atomic layer thickness. We propose a method of quantitative electron diffraction. The uniatomic layer thickness of rhenium diselenide and its crystallographic orientation in the vertical direction are determined, which also has an important effect on the characterization of anisotropic devices. Part two: atomic resolution electron microscopy images can provide microcosmic information on atomic scale, but lack statistical information on relative macro scale, in order to efficiently and accurately analyze the information on these two different scales. We have developed a set of image processing programs. Based on the tools in data science, we have realized the automatic statistics of the atomic distribution in the atom-level resolution image. Finally, we have obtained the information of the atomic local crystallographic environment. Compared with hexagonal materials such as graphene, hexagonal boron nitride and molybdenum disulfide, the application of low symmetry two-dimensional materials in anisotropic devices shows great potential. The bulk rhenium diselenide belongs to the space group P _ 1, which is a distorted structure of cadmium iodide, that is, a low symmetry triclinic crystal system. A method based on quantitative electron diffraction is proposed to distinguish the monolayer and multilayer of rhenium diselenide, and two different vertical orientations of monolayer are also determined. Based on our principle, the method can also be applied to other low symmetry crystal systems, including triclinic and monoclinic systems, as long as they satisfy the third basis vector of the unit cell and are not perpendicular to their base plane. From the experimental results, the theory of kinematic electron diffraction and the inference of multilayer simulation are well confirmed. Finally, we discuss the extension of this method to other two-dimensional materials, such as graphene. With the development of electron microscope imaging technology and the improvement of resolution, the acquisition of atomic scale structure and function data is becoming more and more common. These data provide us with a wealth of information, such as high-dimensional spectroscopic data used in functional representations and information on atomic positions, types, arrangements in structural representations, in order to analyze these complex and massive data. Data science will play a more and more important role in experimental data analysis. Atomic resolved scanning transmission electron microscopy (SEM) directly reflects the atomic structure information of two-dimensional materials and is especially suitable for characterization of doped transition metal sulfur compounds in order to extract information efficiently from images. We have developed a set of image processing programs to determine the position and category of atoms in alloyed two-dimensional materials, and on this basis to analyze the local environment of atoms and to calculate the alloying degree.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB383.1
【相似文献】
相关期刊论文 前10条
1 周景良;;近代矿物学第十七讲 矿物晶体的电子衍射[J];地质地球化学;1984年04期
2 林一坚 ,章靖国 ,黄伟基;计算机在电子衍射图分折中的应用实例(一)[J];上海钢研;1985年04期
3 李春志;分析几种常见电子衍射图的计算机程序[J];金属学报;1985年04期
4 王裕文;;一种标定电子衍射图的方法——三线法[J];马鞍山钢铁学院学报;1985年02期
5 王裕文;;电子衍射的电脑分析程序[J];马鞍山钢铁学院学报;1985年03期
6 李玉清;刘锦岩;;晶体取向关系的电子衍射——矩阵分析法[J];物理测试;1986年01期
7 孙大明;闻杰;汪白扬;;电子衍射用铜膜氧化现象的观察和分析[J];安徽大学学报(自然科学版);1989年02期
8 周天健;李云;;计算机辅助标定与绘制电子衍射图[J];安徽工学院学报;1989年04期
9 潘明祥;华明建;李春志;刘军;;电子衍射谱分析的一种有效方法—电子衍射图表法[J];金属科学与工艺;1989年01期
10 ;附录2 电子衍射花样实例[J];钢铁研究情报;1977年01期
相关会议论文 前8条
1 孙俊良;;基于电子衍射的结构确定[A];中国化学会第29届学术年会摘要集——第13分会:晶体工程[C];2014年
2 李婷;王河锦;;一种电子衍射指标的新方法-行指标化[A];中国晶体学会第五届全国会员代表大会暨学术大会(电子衍射分会场)论文摘要集[C];2012年
3 谢中维;叶恒强;朱静;;《集成化电子衍射程序包的研制》[A];第八次全国电子显微学会议论文摘要集(Ⅱ)[C];1994年
4 孙瑞涛;韩明;尹文红;于忠辉;;电子衍射的相对强度[A];第十二届中国体视学与图像分析学术会议论文集[C];2008年
5 王蓉;;电子衍射动力学理论[A];Advanced High-Resolution Electron Microscopy-Theory and Application--Proceeding of CCAST (World Laboratory) Workshop[C];2002年
6 韩晓东;毛圣成;张泽;;背散射电子衍射在弹-塑性转变中的应用(邀请报告)[A];第二届全国背散射电子衍射(EBSD)技术及其应用学术会议暨第六届全国材料科学与图像科技学术会议论文集[C];2007年
7 边为民;邓江宁;;电子衍射花样综合分析应用程序[A];第十三届全国电子显微学会议论文集[C];2004年
8 李子安;杨槐馨;Yamauchi T;Ueda Y;李建奇;;β-Ca_(0.33)V_2O_5晶体的电子衍射与高分辨像研究[A];2006年全国电子显微学会议论文集[C];2006年
相关重要报纸文章 前1条
1 中国科学院院士 李方华;科学与科学家的成长[N];光明日报;2003年
相关博士学位论文 前4条
1 李梦超;百千伏超快电子衍射系统的研发[D];中国科学院大学(中国科学院物理研究所);2017年
2 李静;直流加速—射频压缩超快电子衍射系统的研制[D];华东师范大学;2013年
3 吴建军;超快电子衍射系统的理论与实验研究[D];中国科学院研究生院(西安光学精密机械研究所);2006年
4 李任恺;兆电子伏超快电子衍射的理论与实验研究[D];清华大学;2010年
相关硕士学位论文 前7条
1 黄江;电子动力衍射模拟方法及应用的研究[D];湘潭大学;2015年
2 曹琦;超快电子衍射图像获取与解析系统[D];华东师范大学;2011年
3 刘虎林;超快电子衍射系统中电子枪的理论及实验研究[D];中国科学院研究生院(西安光学精密机械研究所);2008年
4 王海姣;蒸镀薄膜的电子衍射研究[D];西安工业大学;2012年
5 周然;固相烧结制备的层状Li_(0.5)Na_(0.5)CoO_2显微结构研究[D];中南大学;2014年
6 宋宝来;四方和六方晶系基本特征平行四边形表的统一及电子衍射花样的标定分析与改进[D];湘潭大学;2007年
7 张琳;基于CUDA架构的高性能图像处理程序设计[D];电子科技大学;2014年
,本文编号:2362166
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2362166.html