基于超声LAMB波的碳纤维复合材料分层缺陷识别的研究
[Abstract]:Carbon fiber composites are widely used in various fields because of their superior comprehensive properties. In the process of using carbon fiber composites, because of the defects of the materials themselves, or the defects of some components and equipment made of carbon fiber composite materials in the process of use, they will bring safety risks to the users. It even caused huge losses. Therefore, the detection of material defects is a particularly important link. Ultrasonic nondestructive testing (NDT) is an advanced nondestructive testing technology, and computer tomography is widely used in medical field. The main content of this paper is to combine ultrasonic nondestructive testing with computer tomography to detect and identify delamination defects of carbon fiber composites. The main contents are as follows: the propagation characteristics of ultrasonic wave in the same and anisotropic materials are studied by consulting the literature at home and abroad, and the dispersion equations and dispersion curves of ultrasonic Lamb in these two different materials are given respectively. It provides a theoretical basis for extracting the excitation signal and travel time of ultrasonic Lamb wave in finite element simulation and experiment. The theoretical basis of computer tomography technology is introduced in detail, and the mathematical formulas of parallel scanning filtering backprojection algorithm and sector scanning filtering backprojection algorithm based on central slice theorem are derived. At last, the detailed steps of the two algorithms are given. Finally, the sector scan filter backprojection algorithm is selected for the simulation and experiment of the image reconstruction algorithm. Carbon fiber composite multidirectional plate T300 / 5028 is chosen as the research object in this paper. The thin plate models with delamination defects in different positions are established by using ABAQUS finite element software. The propagation of ultrasonic Lamb wave in thin plate is simulated by loading sinusoidal signal of Hanning window with five periods, and the travel time data of sector scanning projection mode are extracted. The program of sector scan filter backprojection algorithm is written by MATLAB, and the extracted travel time data are replaced in the algorithm to reconstruct the thin plate model, and the defect information is clearly visible. Finally, the experimental platform is built and the imaging results of the experiment are obtained. Because of the limitation of the experimental conditions, the imaging quality of the experiment is not as high as that of the simulation, but the imaging effect is also considerable, and the reasons for this phenomenon are also analyzed. Through the combination of simulation and experiment, it is proved that this technique can be applied in engineering practice, which lays a foundation for further research.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB33
【参考文献】
相关期刊论文 前10条
1 贾继红;张晓丽;陈小凡;;小波理论在碳纤维复合材料分层缺陷检测中的应用[J];现代制造工程;2015年12期
2 魏莹莹;安庆龙;蔡晓江;陈明;;碳纤维复合材料超声扫描分层检测及评价方法[J];航空学报;2016年11期
3 张菡英;刘明;;碳纤维复合材料的发展及应用[J];工程塑料应用;2015年11期
4 赵艳荣;胡平;梁继才;张文杰;;碳纤维复合材料在汽车工业中的应用[J];合成树脂及塑料;2015年05期
5 赵凯;陈虹;张婧;于今;张定金;;碳纤维复合材料在无人机上的应用[J];高科技纤维与应用;2015年04期
6 黄跃娟;孙大权;周海成;;无损检测技术在碳纤维复合材料检测中的应用[J];江西建材;2015年03期
7 周正干;孙广开;马保全;李洋;;先进复合材料超声无损检测新技术的应用[J];科技导报;2014年09期
8 于今;陈虹;张婧;赵凯;张定金;;日本碳纤维复合材料在汽车领域应用的新进展[J];高科技纤维与应用;2013年06期
9 朱延霆;梁丽红;张亚军;冯宇翔;叶小艳;;碳纤维复合材料气瓶的CT检测实验研究[J];CT理论与应用研究;2013年04期
10 刚铁;刘强;;薄板结构中Lamb波的检测与仿真[J];无损检测;2013年07期
相关会议论文 前2条
1 宋瑶;王园;;水浸式脉冲反射板法检测复合材料碳纤维层压板分层缺陷[A];探索 创新 交流——第六届中国航空学会青年科技论坛文集(下册)[C];2014年
2 刘镇清;;板中声—超声信号的兰姆波分析[A];中国声学学会1999年青年学术会议[CYCA'99]论文集[C];1999年
相关硕士学位论文 前9条
1 张值豪;基于反向传播算法的超声断层成像重建方法研究[D];哈尔滨工业大学;2016年
2 肖强;复合材料板超声层析成像研究[D];电子科技大学;2016年
3 付玉;T300碳纤维复合材料损伤声发射特性研究[D];东北石油大学;2015年
4 王恩报;基于有限元法超声波频散曲线的研究[D];电子科技大学;2015年
5 马豪;基于扇束的兰姆波层析成像的研究[D];电子科技大学;2015年
6 郭薇;碳纤维复合材料缺陷检测方法研究[D];天津大学;2014年
7 徐建勇;碳纤维复合材料孔隙缺陷超声检测技术研究[D];浙江大学;2013年
8 吴国瑶;超声断层成像重建方法研究[D];哈尔滨工业大学;2011年
9 高远飞;碳纤维复合材料实时成像检测技术[D];中北大学;2011年
,本文编号:2362093
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2362093.html