基于内聚力模型非均质材料损伤与失效的数值研究
[Abstract]:The non-homogeneous material is usually a composite material composed of different materials or phases, and is widely used in the fields of building, machinery, electronics and aerospace, due to the advantages of high strength, high temperature resistance, corrosion resistance, high toughness, oxidation resistance and the like. This kind of material often has multi-phase composition, so its research method is different from the homogeneous material. The numerical model of the non-homogeneous material mainly has the macro-model, the micro-model and the multi-scale model. The micro-model can truly reflect the damage and failure phenomenon inside the material and is widely used. The numerical model, which can objectively reflect the relationship between the microstructural characteristics and the damage evolution, is the premise and foundation of the mesoscopic numerical study. Many scholars at home and abroad have put forward many damage models, but most of the models are more complex or more parameters, and the practical engineering application is very difficult. The cohesive force model has become a hot spot of a study because of its simple and accurate simulation of many engineering fracture problems. However, using the cohesive force model to study the damage and damage of the non-homogeneous material, and to simulate the expansion of any crack, it is still relatively rare at home and abroad, and there are still many problems to be perfected or solved. In view of the above problems, the micro-model of two typical non-homogeneous materials (concrete and non-homogeneous solder alloy material) is constructed based on three numerical modeling methods. The defect that the model of the common modeling method is too simplified and the modeling process is too complicated is improved, and the modeling efficiency is improved. At the same time, an improved cohesive force model was used to study the damage and fracture failure of non-homogeneous material. An inversion optimization method based on the Kalman filter algorithm is proposed in order to determine the parameters of the cohesive force model, and the relevant cohesive force model parameters are determined by the two inversion schemes. The main research work of this paper includes the following aspects: (1) The modeling method of the non-homogeneous material meso-model is studied based on the image processing method (image method) and the random aggregate automatic generation program (procedural law). the identification efficiency of the aggregate profile in the original image method is improved, the modeling process is simplified, and the problem that the model existing in the prior art law is too simplified is improved. At the same time, the modeling method of the combination of the image method and the procedural law is put forward, so that the real micro-structure of the non-homogeneous material can be more accurately characterized. (2) Using the improved double-wire cohesion model, the ABAQUS User-Defined Subprogram (VULEL) was written, and the damage and failure of the concrete and the non-homogeneous solder material were simulated and analyzed. At the same time, a method for realizing the automatic implantation of the cohesive unit is proposed, and the modeling work is also greatly simplified while the calculation efficiency is improved. Finally, the rationality of the above method is verified by a typical example. (3) An inversion optimization method based on the Kalman filter is proposed, and the parameter of the index type cohesion model is determined by the two inversion schemes of the step-by-step optimization method and the energy method. First, the damage of lead-free solder/ copper interface layer was studied by using DCB and SLJ samples for different load modes. Then, the validity and the reliability of the inversion method are verified by using the pseudo-experimental data. Finally, the cohesive force model parameters under two different load models are identified by combining the experimental data and the simulation data. (4) In view of the disadvantage that the non-homogeneous material numerical modeling process is too complicated, this paper develops a set of non-homogeneous material numerical modeling system with interactive interface based on Clanguage. The system integrates a number of numerical modeling methods and an implantation method of the cohesive unit, and the construction of the non-homogeneous material finite element model is realized very conveniently.
【学位授予单位】:浙江工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB33
【相似文献】
相关期刊论文 前10条
1 张秀娟,陈克彰,冯辛安;非均质材料零件的材料设计[J];大连铁道学院学报;2004年01期
2 王瑾;李瑞涛;;非均质材料的力学性能评价研究[J];科技创新导报;2010年15期
3 任懿;杨海天;汪春霆;;非均质材料等效力、热分析综述[J];功能材料;2013年06期
4 任莉;杨睿;郭东明;;非均质材料零件几何和材料的并行设计研究[J];中国机械工程;2008年04期
5 应宗权;杜成斌;程丽;;含夹杂非均质材料的扩展有限元数值模拟[J];河海大学学报(自然科学版);2008年04期
6 徐涛,唐春安,王善勇,赵兴东;裂纹连续度对非均质材料中雁行裂纹扩展的影响[J];东北大学学报;2004年02期
7 郑泉水;非均质材料的力学国际研讨会介绍──纪念J.P.Boehler教授及其科学成就[J];力学进展;1999年03期
8 张春会;赵全胜;于永江;;考虑力学参数关联的非均质煤概率模型[J];岩土力学;2011年02期
9 何沛祥,李子然,冯淼林,吴长春;非均质材料无网格Galerkin法[J];机械强度;2002年01期
10 李文俊;董星涛;王春博;孙磊;卢德林;;基于SLS技术的非均质材料零件成型研究[J];轻工机械;2012年02期
相关会议论文 前9条
1 程长征;丁昊;王大鹏;薛伟伟;;角度非均质材料切口奇性特征研究[A];中国力学大会——2013论文摘要集[C];2013年
2 易新;段慧玲;王建祥;;含多相夹杂的非均质材料等效传导性能预测[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(下)[C];2007年
3 江守燕;杜成斌;顾冲时;;动力扩展有限元法及其在非均质材料裂纹扩展模拟中的应用研究[A];中国力学大会——2013论文摘要集[C];2013年
4 易新;段慧玲;王建祥;;含各向异性非均匀组分的非均质材料的等效传导性能[A];北京力学学会第12届学术年会论文摘要集[C];2006年
5 张国新;;非均质材料温度场的有限元算法[A];中国水利学会首届青年科技论坛论文集[C];2003年
6 耿小亮;张克实;郭运强;秦亮;;非均质材料微成形过程的晶体塑性模拟[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(下)[C];2007年
7 徐文杰;胡瑞林;王艳萍;;基于数字图像的非均质岩土材料细观结构PFC~(2D)模型[A];中国科学院地质与地球物理研究所2007学术论文汇编(第七卷)[C];2008年
8 张春会;于永江;;考虑力学参数关联性的非均质材料随机概率模型[A];第2届全国工程安全与防护学术会议论文集(下册)[C];2010年
9 段慧玲;王建祥;;具有界面效应的Eshelby框架[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年
相关博士学位论文 前5条
1 杨东生;非均质材料热力耦合及弹塑性损伤分析的多尺度方法研究[D];大连理工大学;2015年
2 刘辉;非均质材料动力及非线性分析的多尺度有限元方法研究[D];大连理工大学;2013年
3 任懿;非均质材料的时域自适应—等效力、热分析[D];大连理工大学;2010年
4 江连会;非均质材料零件沉积成形技术研究[D];大连理工大学;2006年
5 罗荣;基于材料组分的非均质岩土体数值建模方法及试验研究[D];武汉大学;2013年
相关硕士学位论文 前5条
1 张素琴;随机非均质材料的宏观力学性质分析[D];西安电子科技大学;2014年
2 靳国辉;基于内聚力模型非均质材料损伤与失效的数值研究[D];浙江工业大学;2015年
3 陈柯霖;非均质材料压痕实验力学分析[D];清华大学;2012年
4 张景涛;重心有限元法及在非均质材料有效模量数值模拟中的应用[D];山东建筑大学;2008年
5 周朋;非均质材料宏观力学性质的随机均匀化分析[D];西安电子科技大学;2014年
,本文编号:2402573
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2402573.html