温和条件下不同形貌氧化钨的控制合成及其气敏性能研究
[Abstract]:Can effectively control the structure, the size and the appearance of the inorganic compound, and is a prerequisite for manufacturing various nano-devices. The semiconductor sensor has the advantages of sensitivity, long service life and the like, and in order to further improve the performance of the semiconductor sensor, the scientific research worker has carried out a lot of research work, such as controlling the structure, the size and the appearance of the semiconductor oxide by adopting a chemical method. The tungsten trioxide has a special crystal structure and physical and chemical properties, and the preparation of the tungsten trioxide powder material with the special dimension structure is widely used through different methods, but the defects of low controllability, low production efficiency, complex process and the like exist. Therefore, the WO3 nano material with controllable nanometer size and uniform appearance is still difficult to obtain through a method of simple operation, low cost and industrialization prospect. If the structure of the nano-material can be further optimized by analyzing the growth mechanism and the characteristics of the morphology, the stability of the preparation process can be improved, and the application of the gas-sensitive performance can be improved. The main work of the project is to control the synthesis of tungsten oxide nano-materials with different dimensions and different shapes by means of a hydrothermal method, a water bath method and the like of a template and an auxiliary agent, The microstructure and micro-morphology of the materials were characterized by HRTEM and SAED, and the growth mechanism was studied by using the crystal structure analysis software Diamond and the like. The optimum operating temperature, sensitivity, selectivity, detection limit and stability gas-sensitive performance parameters were obtained under different temperature and other conditions, and the effect of microstructure on gas-sensitive performance was analyzed. The purpose of this paper is to find a simple and convenient method for the controllable growth of tungsten oxide-based nano-materials, such as one-dimensional and two-dimensional, through the research and improvement of the synthesis process, to study the mechanism of growth and to provide guidance for the interpretation and improvement of gas-sensing performance. in addition, the preparation process is optimized, the tungsten oxide nano material with the nano-grade structure is synthesized, the growth mechanism of the tungsten oxide nano material is analyzed, the gas-sensitive performance of the tungsten oxide nano-material is tested, the influence and the effect of the graded nano-structure on the gas-sensitive performance are discussed, And provides a reference for controlling synthesis and modification of tungsten trioxide with complex structure. The main conclusions of this paper are as follows:1-D nano-wire-like tungsten oxide: the h-WO3 nanowires are controlled by adding appropriate amount of Na2SO4 and K2SO4 as a blocking agent under the hydrothermal condition, The reason for its one-dimensional directional growth is the anisotropic growth due to the presence of Na + and K + ions and the adsorption of SO42-ions. The powder has good gas-sensing performance for the two toxic and harmful gases of ethanol and formaldehyde, and the response sensitivity of the two gases can be more than 10 for 10 ppm under the condition of 300 DEG C, and has good selectivity and high application potential. A two-dimensional nano-sheet tungsten oxide is prepared by adding malic acid (C4H6O5) by a hydrothermal method to control the monodispersed WO3 路 H2O nano-sheet structure of the synthesis rule, the selective adsorption of the malic acid on the crystal face is an important reason for forming the nano sheet, (010) is the main exposed surface, The thickness can be controlled by adjusting the reaction time, and the selective adsorption and the different reaction time of the malic acid on the (010) crystal plane result in the generation of WO3 路 H2O nanosheets with different thicknesses. The gas-sensitive performance test shows that the two kinds of sensors with the thickness of 20-30 nm and ~ 100 nm have good gas-sensing performance. The response sensitivity of the 300 oC for 100 ppm ethanol gas is 29.8 and 26.1, respectively. Further comparison and analysis revealed that the thin WO3 路 H2O nanosheet powder exhibited better gas-sensing performance due to the higher exposure of the (010) crystal face and higher reactivity. The tungsten oxide of a three-dimensional hierarchical structure can be controlled under hydrothermal or water-bath conditions, and the growth mechanism of the WO3 powder material can be controlled and the excellent gas-sensing properties of the WO3 powder material can be proved. the C/ WO3 composite submicroballoon is prepared by a hydrothermal method by using the C microsphere as a template, and the WO3 submicroballoon with the mesoporous structure is obtained by further sintering, The response to 50 ppm of ethanol gas can reach 17.7. In addition, the formation of the sea urchin-like hexagonal h-WO3 microballoon was successfully prepared by the addition of K2SO4-assisted hydrothermal method, and it was found that K2SO4 had a great effect on the formation of the sea urchin-like structure. The sensitivity of the response to 400 ppm of ethanol at the time of 300 oC can reach 17. In addition, the WO 路 H2O nano-flower structure was successfully prepared by the oxalic acid-assisted water bath method, and it was found that WO3 路 H2O prepared at the W/ C ratio of 1: 1.6 has the best crystallization property and better assembled nano-flower structure. The experimental results show that the three-dimensional hierarchical structure can improve the specific surface area, avoid the aggregation of the nano-particles, and improve the gas-sensing performance.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB383.1;O614.613
【相似文献】
相关期刊论文 前10条
1 刘生;李姗;曹明;李树静;杜占;郑建旭;蒋登高;;聚苯胺/钨硅酸复合材料气敏性能研究[J];河南化工;2012年03期
2 潘庆谊;徐甲强;刘铭;王国喜;;α-Fe_2O_3超微粒的制备及其气敏性能的研究[J];河南科学;1990年02期
3 张天舒;沈瑜生;;锌、锡复合氧化物的制备、相组成与气敏性能的关系[J];功能材料;1993年05期
4 宋金玲;周长才;刘瑞平;蔡颖;张胤;;溶胶-凝胶法制备掺杂稀土的二氧化钛及其对丙酮气敏性能研究[J];内蒙古科技大学学报;2012年03期
5 宋金玲;周长才;牟连维;郭冠铭;蔡颖;张胤;;溶胶-凝胶法制备掺杂稀土元素二氧化钛及其气敏性能[J];过程工程学报;2013年01期
6 陈思顺,陈新华,丁明洁,牛新书;钇掺杂纳米α-Fe_2O3_的合成及气敏性能研究[J];电子元件与材料;2005年09期
7 陈思顺;陈新华;丁明洁;牛新书;;掺杂合成纳米α-Fe_2O_3粉体及其气敏性能研究[J];传感器与微系统;2006年03期
8 王燕;张战营;曹建亮;路长;孙广;王杰;;化学沉淀法制备纳米α-Fe_2O_3及其气敏性能研究[J];河南理工大学学报(自然科学版);2011年02期
9 王晓玲,罗延龄,张宝旺,桑德文;聚乙二醇接枝炭黑纳米导电复合材料气敏性研究[J];江苏化工;2004年01期
10 程知萱,李玲,陈海华,潘庆谊;掺杂纳米NiO粉体材料的气敏性能研究[J];郑州轻工业学院学报;2004年04期
相关会议论文 前10条
1 刘杏芹;刘亚飞;高峰;;一种新型镉锑氧化物复合材料的气敏性能及其掺杂改性[A];第三届中国功能材料及其应用学术会议论文集[C];1998年
2 左霞;王彬;吴谊群;;八异戊氧基金属萘酞菁配合物旋涂膜的气敏性研究[A];第六届中国功能材料及其应用学术会议论文集(7)[C];2007年
3 李坚;王元生;黄兆新;;纳米氧化铁粉体的制备和气敏性能研究[A];第三届中国功能材料及其应用学术会议论文集[C];1998年
4 程知萱;李玲;陈海华;潘庆谊;;掺杂纳米NiO粉体材料的气敏性能研究[A];第八届全国气湿敏传感器技术学术交流会论文集[C];2004年
5 董先明;罗颖;解丽娜;唐开聪;陈鑫珏;;炭黑/聚乙二醇/聚甲基丙烯酸甲酯复合材料的导电性能与气敏性能研究[A];2007年全国高分子学术论文报告会论文摘要集(下册)[C];2007年
6 李玲;祁晴晴;张乐喜;别利剑;;花状分级结构α-Fe_2O_3微球的制备及其气敏性能[A];中国化学会第29届学术年会摘要集——第33分会:纳米材料合成与组装[C];2014年
7 杨晓娟;沈水发;刘尔生;杨素苓;陈耐生;黄金陵;;铁酸盐系列纳米晶的制备及其气敏性[A];第三届中国功能材料及其应用学术会议论文集[C];1998年
8 刘婧媛;陈晓爽;景晓燕;;三维花状氧化锌的可控合成及其气敏性能研究[A];中国化学会第29届学术年会摘要集——第33分会:纳米材料合成与组装[C];2014年
9 刘锦淮;孟凡利;刘金云;;半导体纳米结构的气敏性能与纳米整流器件研究[A];中国化学会第28届学术年会第4分会场摘要集[C];2012年
10 潘庆谊;张剑平;程知萱;董晓雯;王廷富;;纺锤形纳米γ-Fe_2O_3的气敏性能[A];第六届全国气湿敏传感器技术学术交流会论文集[C];2000年
相关博士学位论文 前10条
1 葛春桥;金属氧化物纳米材料的湿法制备及其气敏性能研究[D];华中科技大学;2008年
2 谢英男;聚苯胺基复合材料的制备及其气敏性能研究[D];郑州大学;2008年
3 秦楠;氧化锌基纳米材料的制备、气敏性能研究及第一性原理计算[D];上海大学;2014年
4 杨颖;氧化物与晶态碳异质结构构筑及气敏性能研究[D];黑龙江大学;2014年
5 张文惠;半导体金属氧化物的制备、表征及其气敏性能研究[D];华南理工大学;2011年
6 孙立辉;LaFeO_3基氧化物对还原性气体的气敏性与机制研究[D];山东大学;2013年
7 詹自力;纳米In_2O_3气敏性能及其气敏机理研究[D];郑州大学;2003年
8 冯彩慧;掺杂、造孔对常见低维纳米材料气敏性能的影响[D];吉林大学;2013年
9 任富建;纳米结构二氧化钛薄膜的制备及其气敏特性研究[D];清华大学;2011年
10 王燕;低维α-Fe_2O_3纳米材料的合成、改性及气敏性能研究[D];南开大学;2009年
相关硕士学位论文 前10条
1 祁晴晴;氧化钼微结构控制合成及气敏性能[D];天津理工大学;2015年
2 郑辉;纳米结构氧化锡的离子热合成及气敏特性研究[D];浙江大学;2015年
3 王超;石墨稀负载p型-n型半导体氧化物及其气敏性能研究[D];南京理工大学;2015年
4 张肖妮;钨氧化物纳米材料的制备、改性及气敏性能研究[D];大连海事大学;2015年
5 黄海云;氧化锌纳米线的制备及其对痕量H_2S的气敏性能研究[D];上海应用技术学院;2015年
6 刘中兴;金属氧化物半导体对CO_2的气敏性研究[D];山东大学;2015年
7 宋明艳;金属硫化物材料的制备、改性及气敏性能研究[D];大连海事大学;2015年
8 薛婕;氧化锌表面结构的调控及其气敏性能研究[D];北京化工大学;2015年
9 赵杨波;改性提高氧化锌纳米晶体的气敏性能及第一性原理计算[D];北京化工大学;2015年
10 陈超;掺杂MoO_3纳米晶体及MoO_3复合物的制备及其气敏性能研究[D];北京化工大学;2015年
,本文编号:2479226
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2479226.html