复合缺陷对低维纳米材料电子输运性能的调控及器件设计
[Abstract]:In recent years, with the rapid development of the nano-materials, the research of molecular devices has given great attention to the experimental design and the theoretical prediction. With the reduction of the size of the electronic device and the rapid development of the micro-electronic technology, the molecular device will replace the microelectronic device to become the leading force of the world's leading science and technology. As is well known, a variety of new nanomaterials are the primitives of the design of molecular devices. The advantage of the low-dimensional nano-material in the aspects of mechanics, electricity, optics and heat, especially the electron transport property, can play an important role in the development of the electronic device. In the process of the actual production and preparation of the nano-materials, the defects and the impurities are inevitably introduced, and the mechanical, electrical, optical and electron transport properties of the materials are affected, which makes the scientific research of the low-dimensional nanostructures containing defects and impurities more meaningful. In this paper, the control effect of several composite defects on the electron transport performance of low-dimensional nano-materials and the device design are systematically studied by using the first principle method of density functional theory and the non-equilibrium Green's function. The research objects involved include carbon nanotubes (CNTs), graphene nanoribbons (GNRs), and graphene nanobelt (Si NRs), and the like. The main contents of the study are as follows: The electron transport properties of spiral chiral single-walled carbon nanotubes (SWCNTs) with compound defects of nitrogen-containing vacancies are studied. The results of the calculation show that the introduction of the compound defect of the class-like compound composed of the vacancy and the nitrogen atom in the hand SWCNTs effectively improves the electron transport performance of the system, and the obvious negative differential resistance effect and the strong rectification effect are observed. Further studies have found that the variation of the transport coefficient of the composite doping system within the bias window is the root cause of the rectification effect. The electron structure and transport properties of the chiral (8,4) carbon nanotubes and the chiral (6,3) carbon nanotubes containing the encapsulated boron-deficient complex were studied. The results show that (i) for the (8,4) SWCNTs system, the defect state is generated near the Fermi level, whether the intrinsic defect or the compound defect containing the metal matrix. In which the electron local effect caused by the defect state of the intrinsic defect can hinder the electron conduction ability of the carbon nano tube, and the oxidation of the intrinsic defect to the intrinsic defect effectively enhances the transmission conductance of the SWCNTs. In this paper, the electron transport performance of the SWCNTs (SWCNTs) device with the matrix-based defect complex is further studied, which shows that the defect complex under the bias effect reduces the electronic conduction of the SWCNTs, and the device has a significant negative differential resistance effect. The system has a strong rectifying effect when and only when the single-vacancy defect of the high-performance molecular rectifier is defective, which provides valuable reference for the research of the high-performance molecular rectifier. (ii) For the (6,3) SWCNTs system, the encapsulated boron-vacancy composite structure is more stable than other composite defect structures. In this paper, the electron-conduction ability of (6,3) SWCNTs is enhanced by the compound defect of the encapsulated boron vacancy, and the combined defects of the encapsulated boron and the encapsulated boron SW have hindered the electron transport channel of the system. Further studies have confirmed that the phenomenon is completely attributable to the mutual coupling between the base and the molecular orbital of the boron-deficient complex. These special phenomena indicate the potential application value of the carbon nanotubes with the encapsulated defect complex in the research of the device. The effect of sinx on the electronic structure and transport properties of an armchair-type graphene nanobelt was studied. In which a sinx composite dopant is formed by embedding si and n atoms at an adjacent atomic lattice point. The results show that the sinx composite doped body causes the agrs system to generate the impurity state near the Fermi level, and the doping energy band moves down with the increase of the n-atom concentration and intersects the Fermi level. Further studies show that the impurity level and the donor energy level are separated and are all subject to the perturbation of the impurities. A significant negative differential resistance effect is observed in the sinx composite dopant system and the effect is reduced as the n concentration increases. This indicates that the low-n-concentration sinx composite doping can effectively adjust the electron-conducting properties of the armchair-type graphene nanobelt. The effect of a lattice point (aa-p2) on the electron structure and transport properties of an armchair-type silicon-ene nanobelt was studied. The results show that the conversion between the semiconductor and the metallic property occurs in the process of doping the aa-p2 impurity from the center of the nanobelt to the edge. This is due entirely to the mutual coupling between the impurity phosphorus (p) atom and the silicon (si) atom pz track. Each doping system has a symmetric negative differential resistance effect under a low bias voltage. However, with the process of the aa-p2 dopant from the center to the edge, the symmetry of the negative differential resistance effect is gradually reduced. More interesting is that the system has a strong rectifying effect when and only when aa-p2 is in the edge diagonally-doped position. Secondly, based on the stable aa-p2, the electron transport performance of the aa-p2-doped asinth device is studied. The left electrode is an ideal graphene nanobelt, and the right electrode is aa-p2-doped graphene nanobelt. The results show that the electron transport property of the device is strongly dependent on the width of the nanobelt and the doping position of aa-p2. A strong rectifying behavior is observed in the device, and the rectifying effect of the device can be effectively regulated by changing the width of the nanobelt and the aa-p2 impurity position. Further studies have shown that the coupling between the matching region of the left and right electrode bands and the corresponding molecular orbital and the electron energy band is the root cause of the rectification effect. The effects of the edge termination of fluorine (f) and hydroxyl (-oh) functional groups on the electron transport and rectification of two n-triangular graphene nanosheets (tgns) were studied. The results show that the edge modification of the left tgns (ltgns) by the f-atom and-oh functional group makes the molecular device exhibit the rectification behavior of different strength and direction. The difference of the atom or functional group to the ltgns edge modification position causes the molecular device to appear in a completely opposite direction of rectification. While the chemical activity of the edge-modified atoms or functional groups directly affects the rectification strength of the molecular device. Further studies have shown that the Schottky barrier produced by the movement of the charge between the left and right electrodes connected to one another and the left and right tgns cross-section is the root cause of the effect of the rectification. This is important for the understanding and development of the edge-tube-enabled tgns molecular rectifier. In this paper, the rectification behavior of the (al) atom and the phosphorus (p) atom vertex-doped n-triangular silicon nano-sheet (tsins)-junction device is studied. The results show that vertex doping in different configurations significantly affects the rectifying performance of the device. In which, the al-si and al-p-doped devices show forward rectification behavior, and the rectifying ratio of the al-p system is larger. In contrast, the Si-P doping system exhibits a reverse rectification behavior. This indicates that the different doping configurations of the left and right TSi Ns can effectively control the rectifying effect of the molecular junction device and provide favorable conditions for the design of the molecular rectifier.
【学位授予单位】:湖南大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TB383.1
【相似文献】
相关期刊论文 前10条
1 杜仕国,施冬梅,邓辉;纳米材料的特异效应及其应用[J];自然杂志;2000年02期
2 ;纳米材料 新世纪的黄金材料[J];城市技术监督;2000年10期
3 ;什么是纳米材料[J];中国粉体技术;2000年05期
4 邹超贤;纳米材料的制备及其应用[J];广西化纤通讯;2000年01期
5 吴祖其;纳米材料[J];光源与照明;2000年03期
6 ;纳米材料的特性与应用方向[J];河北陶瓷;2000年04期
7 沈青;纳米材料的性能[J];江苏陶瓷;2000年01期
8 李良训;纳米材料的特性及应用[J];金山油化纤;2000年01期
9 刘冰,任兰亭;21世纪材料发展的方向—纳米材料[J];青岛大学学报(自然科学版);2000年03期
10 刘忆,刘卫华,訾树燕,王彦芳;纳米材料的特殊性能及其应用[J];沈阳工业大学学报;2000年01期
相关会议论文 前10条
1 王少强;邱化玉;;纳米材料在造纸领域中的应用[A];'2006(第十三届)全国造纸化学品开发应用技术研讨会论文集[C];2006年
2 宋云扬;余涛;李艳军;;纳米材料的毒理学安全性研究进展[A];2010中国环境科学学会学术年会论文集(第四卷)[C];2010年
3 ;全国第二届纳米材料和技术应用会议[A];纳米材料和技术应用进展——全国第二届纳米材料和技术应用会议论文集(上卷)[C];2001年
4 钟家湘;葛雄章;刘景春;;纳米材料改造传统产业的实践与建议[A];纳米材料和技术应用进展——全国第二届纳米材料和技术应用会议论文集(上卷)[C];2001年
5 高善民;孙树声;;纳米材料的应用及科研开发[A];纳米材料和技术应用进展——全国第二届纳米材料和技术应用会议论文集(上卷)[C];2001年
6 ;全国第二届纳米材料和技术应用会议[A];纳米材料和技术应用进展——全国第二届纳米材料和技术应用会议论文集(下卷)[C];2001年
7 金一和;孙鹏;张颖花;;纳米材料的潜在性危害问题[A];中国毒理学通讯[C];2001年
8 张一方;吕毓松;任德华;陈永康;;纳米材料的二种制备方法及其特征[A];第四届中国功能材料及其应用学术会议论文集[C];2001年
9 古宏晨;;纳米材料产业化重大问题及共性问题[A];纳米材料和技术应用进展——全国第三届纳米材料和技术应用会议论文集(上卷)[C];2003年
10 马玉宝;任宪福;;纳米科技与纳米材料[A];纳米材料和技术应用进展——全国第三届纳米材料和技术应用会议论文集(上卷)[C];2003年
相关重要报纸文章 前10条
1 记者 周建人;我国出台首批纳米材料国家标准[N];中国建材报;2005年
2 记者 王阳;上海形成纳米材料测试服务体系[N];上海科技报;2004年
3 ;纳米材料七项标准出台[N];世界金属导报;2005年
4 通讯员 韦承金邋记者 冯国梧;纳米材料也可污染环境[N];科技日报;2008年
5 廖联明;纳米材料 利弊皆因个头小[N];健康报;2009年
6 卢水平;院士建议开展纳米材料毒性研究[N];中国化工报;2009年
7 郭良宏 中国科学院生态环境研究中心研究员 江桂斌 中国科学院院士;纳米材料的环境应用与毒性效应[N];中国社会科学报;2010年
8 记者 任雪梅 莫璇;中科院纳米材料产业园落户佛山[N];佛山日报;2011年
9 实习生 高敏;纳米材料:小身材涵盖多领域[N];科技日报;2014年
10 本报记者 李军;纳米材料加速传统行业升级[N];中国化工报;2013年
相关博士学位论文 前10条
1 杨杨;功能化稀土纳米材料的合成及其生物成像应用[D];复旦大学;2014年
2 王艳丽;基于氧化钛和氧化锡纳米材料的制备及其在能量存储中的应用[D];复旦大学;2014年
3 吴勇权;含铕稀土纳米材料的功能化及其生物成像应用研究[D];复旦大学;2014年
4 曹仕秀;二硫化钨(WS_2)纳米材料的水热合成与光吸收性能研究[D];重庆大学;2015年
5 廖蕾;基于功能纳米材料的电化学催化研究[D];复旦大学;2014年
6 胥明;一维氧化物、硫化物纳米材料的制备,,功能化与应用[D];复旦大学;2014年
7 李淑焕;纳米材料亲疏水性的实验测定与计算预测[D];山东大学;2015年
8 范艳斌;亚细胞水平靶向的纳米材料的设计、制备与应用[D];复旦大学;2014年
9 丁泓铭;纳米粒子与细胞相互作用的理论模拟研究[D];南京大学;2015年
10 骆凯;基于金和石墨烯纳米材料的生物分子化学发光新方法及其应用[D];西北大学;2015年
相关硕士学位论文 前10条
1 向芸颉;卟啉纳米材料的制备及其应用研究[D];重庆大学;2010年
2 刘武;层状纳米材料/聚合物复合改性沥青的制备与性能[D];华南理工大学;2015年
3 刘小芳;基于纳米材料/聚合膜材料构建的电化学传感器应用于生物小分子多组分的检测[D];西南大学;2015年
4 王小萍;基于金纳米材料构建的电化学传感器及其应用[D];上海师范大学;2015年
5 郭建华;金纳米材料的修饰及其纳米生物界面的研究[D];河北大学;2015年
6 魏杰;普鲁士蓝纳米粒子的光热毒性研究[D];上海师范大学;2015年
7 张华艳;改性TiO_2纳米材料的制备及其光电性能研究[D];河北大学;2015年
8 胡雪连;基于纳米材料的新型荧光传感体系的构筑[D];江南大学;2015年
9 黄樊;氧化钴基催化材料形貌、晶面控制与催化性能研究[D];昆明理工大学;2015年
10 周佳林;新型核壳结构金纳米材料用于肿瘤的近红外光热治疗研究[D];浙江大学;2015年
本文编号:2483746
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2483746.html