当前位置:主页 > 科技论文 > 材料论文 >

管状三维织物的织造及其复合材料的力学性能探索

发布时间:2019-05-24 20:40
【摘要】:三维织物是一种结构复杂的立体织物,角连锁织物是三维织物其中的一种交织成型的结构稳定的立体织物。角连锁织物结构复杂而有规律,通过设计相关的结构参数,设计织造出相关三维织物。角连锁三维织物一般结合高性能纤维制造成先进复合材料,运用于生活的各个领域。本文以纬角连锁为织物的基本组织结构,通过设计经纬纱的交织方式,使管状织物一体成型的同时,其在沿管壁方向有纬纱的叠加而增加管壁的厚度。具体设计为穿棕采用顺穿法,穿筘采用一筘一入,将1500D芳纶长丝织造一体成型的两层、三层、四层管状织物,同时设计织造出与各层管状织织物具有相同经纱根数以及相同斜纹倾斜度的斜纹织物,卷绕成相应层数的管状。用环氧树脂、稀释剂、固化剂增强相,采用真空辅助成型工艺(VARTM)及自主设计的易脱模管状模具对其进行复合,模具特征在于包括一个圆柱内衬体、内套管和外套管,圆柱内衬体可分为n个分割体,拆卸时分别抽出,通过减小与管壁的接触面积而有效地减小了圆柱内衬体外壁与管状复合材料内壁的摩擦力,使圆柱内衬模具的脱去简单易操作。通过对所制备的的复合管状材料与相应斜纹织物卷绕成相同层数管状的管状复合材料的力学测试对比,来分析经纬纱在外力作用下的受力破坏方式。实验结果表明:采用合适的织造工艺参数,以及对织机的零部件进行调整,控制打纬时的纬纱张力,能完整的织造出一体成型的三维管状织物。在压缩性能与弯曲性能对比后得出,一体成型的管状织物复合材料由于纬纱相互缠扰,对各层经纱的束缚效果,能有效的减缓复合管材的破坏过程,且其压缩断裂强力以及弯曲最大受力都优于卷绕成型的管状复合材料。
[Abstract]:The three-dimensional fabric is a three-dimensional fabric with a complex structure, and the angle-linked fabric is a three-dimensional fabric with a stable and stable three-dimensional fabric. The structure of the angle chain fabric is complicated and regular, and the related three-dimensional fabric is designed by the design of the related structural parameters. The angle-linked three-dimensional fabric is generally made into an advanced composite material with high-performance fibers, and is applied to various fields of life. In this paper, the basic structure of the fabric is linked by the weft angle, and the thickness of the pipe wall is increased by the superposition of the weft yarns in the direction of the pipe wall by the design of the warp of the weft. in particular to a two-layer, three-layer and four-layer tubular fabric which are integrally formed by weaving a 1500-D aramid filament, and a twill fabric with the same warp number and the same twill inclination is designed and woven, And is wound into a tubular shape with a corresponding number of layers. The invention is characterized by comprising a cylindrical inner liner, an inner sleeve and an outer sleeve, wherein the cylindrical liner body can be divided into n segments, And the friction between the outer wall of the cylindrical lining and the inner wall of the tubular composite material is effectively reduced by reducing the contact area with the pipe wall, so that the removal of the cylindrical lining mould is simple and easy to operate. Through the mechanical test comparison of the prepared composite tubular material and the corresponding twill fabric into the tubular composite material with the same number of layers, the stress failure mode of the warp yarn under the action of external force is analyzed. The experimental results show that the proper weaving process parameters and the adjustment of the components of the loom can be used to control the tension of the weft at the time of beating, and the three-dimensional tubular fabric can be completely woven. after the compression performance and the bending performance are compared, the integrally formed tubular fabric composite material can effectively slow the damage process of the composite pipe due to the mutual entanglement of the weft yarns, the binding effect on the warp of each layer, And the compression fracture strength and the bending maximum stress are superior to the wound-formed tubular composite material.
【学位授予单位】:武汉纺织大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TS106;TB332

【参考文献】

相关期刊论文 前10条

1 田颖;李国忠;赵帅;;改性芳纶纤维/水泥砂浆复合材料的力学性能[J];中北大学学报(自然科学版);2012年04期

2 陈超峰;王凤德;彭涛;;对位芳纶及其复合材料发展思考[J];化工新型材料;2010年06期

3 贾西文;高彦涛;刘元坤;;三维正交机织复合材料弹道侵彻有限元模拟[J];纤维复合材料;2010年01期

4 赵永霞;董奎勇;;澄清新型纤维的真相(四)——芳纶[J];纺织导报;2009年12期

5 李晔;;对位芳纶的发展现状、技术分析及展望[J];合成纤维;2009年09期

6 江镇海;;仪征化纤拟建3kt/a对位芳纶装置[J];合成纤维工业;2009年03期

7 钱伯章;;芳纶的发展现状与市场[J];新材料产业;2009年01期

8 刘爱平;赵书林;;纺织复合材料的应用和发展[J];天津纺织科技;2008年03期

9 钱松;;我国芳纶纤维的国产化进程加快[J];精细化工原料及中间体;2008年05期

10 高启源;;高性能芳纶纤维的国内外发展现状[J];化纤与纺织技术;2007年03期

相关硕士学位论文 前3条

1 彭璇;三维织物的成型加工及其纳米复合材料的性能研究[D];武汉纺织大学;2015年

2 徐方;碳纤维管状立体织物复合材料机械性能的实验与研究[D];东华大学;2013年

3 刘海东;三维角联锁结构复合材料弹性性能有限元分析[D];天津工业大学;2007年



本文编号:2485167

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2485167.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b6832***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com