当前位置:主页 > 科技论文 > 材料论文 >

半导体金属氧化物异质结构的制备及其在气体传感器中的应用研究

发布时间:2020-06-11 11:57
【摘要】:金属氧化物半导体纳米材料由于其制备方法简单、成本低、对各种气体有响应而广泛应用于气体传感领域。近年来,金属氧化物半导体气敏材料的研究一直是作为提升气体传感性能的主要突破点而备受关注。主要研究方向包括材料类型、形貌、暴露晶面、表面改性和器件结构。然而,在制作气体传感器件时,广泛使用涂覆工艺,其工艺繁琐,成品率低,且易引起材料团聚。考虑到基于纳米复合材料的器件具有开放式的结构,使得目标气体更容易扩散到材料内部。因此,仍然需要全面重视器件结构的改善。本论文以金属氧化物半导体气体传感器为基础的纳米复合材料作为研究对象,结合静电纺丝和水热法,制备了新型复合金属氧化物半导体气敏材料。通过对前驱体产物的表征来分析其生长机制。通过构建气体传感器原型器件来测试复合纳米材料的气体传感性能。本文的主要研究内容包括:1.我们使用静电纺丝和水热技术的简单两步法合成了基于α-Fe2O3/NiO纳米片包覆纤维的新型分级异质结构。将高浓度的α-Fe2O3纳米片均匀地外延沉积在NiO纳米纤维上。通过XRD,SEM,TEM,EDX,XPS和BET分析研究了基于α-Fe2O3/NiO复合材料的纳米结构的结晶性,形貌结构和表面组成。极端支化的α-Fe2O3/NiO纳米片覆盖纤维具有多孔结构,具有大的比表面积,这对于优良的气体传感器来说至关重要。通过调整前驱体的比例,探索了基于α-Fe2O3/NiO复合材料的不同纳米结构。与纯NiO纳米纤维相比,在较低的工作温度下其气敏响应更高、响应-恢复速度更快,并且对丙酮的选择性更好。其中,α-Fe203/Ni0纳米片包覆纤维的S-2在169 ℃下100ppm丙酮的气敏响应高达18.24,大约是纯NiO纳米纤维的6.9倍。基于α-Fe2O3/NiO纳米片覆盖纤维的复合材料气敏性能的提升可归因于具有大的表面积、p/n结和α-Fe2O3与NiO的协同性能。2.我们结合静电纺丝和水热法两步合成NiO/ZnSn03新型异质结构,在ZnSnO3纳米纤维上均匀地外延修饰大量的NiO微球。通过XRD,SEM,TEM,EDX,XPS和BET等表征手段研究了NiO/ZnSnO3复合材料的物相、形貌结构和表面状态。NiO/ZnSnO3异质结构带有介孔结构表现出大的比表面积,是制备高性能气体传感器的关键。与纯ZnSn03纳米纤维相比,基于NiO/ZnSnO3复合材料的器件气敏性能有所改善,比如在低温时表现出对乙醇气体的高灵敏度、选择性以及快速的响应-恢复速度。在160 ℃时,NiO微球修饰的复合材料对20ppm乙醇的响应高达23.95,是纯ZnSnO3纳米纤维的2.5倍。NiO/ZnSnO3复合材料传感性能的提升可归因于其具有高的比表面积、大量氧空位、p/n结效应和NiO与ZnSnO3异质结构之间的协同作用。3.我们采用表面活性剂水热处理A1(N03)3、NiCl2和NaC2O4水溶液,通过在500℃空气中连续退火合成了铝掺杂NiO超长纳米线,具有很好的分散性和清晰的形貌。研究了未掺杂和铝掺杂的NiO纳米线对乙醇、甲醇、丙酮、二甲苯、甲苯和苯的传感性能。结果表明,对比纯纳米线、掺杂量为1.6 at%、2.1 at%和4.3 at%,铝掺杂量为3.2 at%时,气敏性能提升最大。研究表明,器件的气敏性能随着纳米线中铝掺杂含量的增加而提升。在NiO纳米晶体中,Al3+离子同化是通过诱导NiO纳米线缺氧和化学吸附氧的变化来改变载流子浓度。因此,在NiO纳米线中掺入A13+将是设计优良气体传感器的一种有效方法。
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2019
【分类号】:TP212;TB34


本文编号:2707869

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2707869.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户eb7e7***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com