【摘要】:木塑复合材料是一种绿色可循环利用的环保建筑材料,目前其主要应用领域为建筑材料,常被用作户外景观建筑、户外地板、建筑内外墙挂板,在汽车行业也有少量应用如汽车内饰等。如何进一步拓展木塑复合材料的应用范围一直是个重要议题。本研究提出了赋予木塑复合材料光致变色功能,提高木塑复合材料的表面装饰性,预期应用于紫外线感应、室内外指示标识、装饰、环境艺术设计、家具制造甚至替代某些光学元器件等多个领域。本文主要研究内容和结果如下:(1)采用热压覆贴方法制备了光致变色木塑复合材料(P-WPC),采用光致变色粉作为功能性填料,以聚丙烯为基体制备聚丙烯/光致变色粉复合材料,然后将其压制成1mm厚的光致变色表层,用热压法覆贴在高密度聚乙烯基木塑复合材料表面。通过扫描电镜、X射线光电子能谱、傅里叶红外光谱、紫外-可见光谱等分析,结果表明光致变色粉是直径为1μm-6μm的球形,吸收波长为350nm~400nm的紫外线,其主要成分为螺VA嗪及其衍生物。(2)在制备聚丙烯/光致变色粉复合材料的过程中有一组试件添加了二甲基硅油作为润滑剂,以提高光致变色粉在聚丙烯基体中的分布均匀性,电镜观察结果显示两组试件中光致变色粉都能聚丙烯基体中均匀分布,与是否添加二甲基硅油的相关性不大。采用上述覆贴法制备的P-WPC,因表层厚度只有1mm,所以表层光致变色粉的添加量不宜低于2%。人工老化试验的结果表明光致变色粉添加量对热压法制备的光致变色木塑复合材料的光致变色功能保持时间的影响很明显,即光致变色粉添加量越大试件耐疲劳时间越长。(3)采用共挤出方法制备核壳结构的光致变色木塑复合材料(CP-WPC),其壳层是高密度聚乙烯(HDPE)和光致变色粉,核层是HDPE基木塑复合材料。采用两种试件制备方法测定CP-WPC的物理力学性能,一种是保留完整共挤出结构形式的试件,另一种是非完整共挤结构(只保留壳层上下表面)的试件,两种试件物理力学指标的变化趋势是一样。随后进行了单因素方差分析,结果表明壳层光致变色粉的添加量只对完整核壳结构试件的抗弯性能有显著影响对其他指标无显著影响。电镜观察结果显示核层与壳层之间无界面或层间缝隙,即两者界面结合很好。人工和自然老化过程表明,壳层光致变色粉添加量仍对试件耐疲劳时间有直接影响,壳层光致变色粉添加量越大变色后色饱和度也越高。(4)针对CP-WPC物理力学性能并不理想的问题,进行了在壳层添加短切碳纤维(CCF)的尝试。为了确定短切纤维的长度,以及短切碳纤维与基体之间的界面对复合材料性能的影响关系,首先采用在木塑复合材料中整体添加短切碳纤维的方式进行探索。结果表明短切碳纤维长度为4mm时复合材料的整体性能较好,马来酸酐接枝聚乙烯(MAPE)作为碳纤维和HDPE之间的偶联剂能够起到一定作用。随后制备短切碳纤维增强共挤出光致变色木塑复合材料(CCF-CP-WPC),仅壳层添加短切碳纤维,检测其物理力学性能、紫外光照射前后的颜色、人工老化和自然老化,结果表明当壳层添加短切碳纤维添加量达到6%及以上时试样的抗弯性能和拉伸性能均明显升高,但颜色测定结果和老化试验结果均表明此时试件的光致变色功能受到了极大负面影响,因此该增强手段并不适合用于增强CP-WPC。(5)通过在壳层添加不同比例的木粉制备了木粉增强共挤出光致变色木塑复合材料(W-CP-WPC),发现这种方法可明显提高CP-WPC的物理力学性能,而且壳层是否添加木粉对CP-WPC的光致变色功能的影响很小,壳层木粉添加量的最佳范围是2%~6%,制备的W-CP-WPC的抗弯强度(非完整共挤出结构试件)可达到58MPa左右。颜色测定结果表明试件具备光致变色功能,随着壳层木粉添加量的增多,试件激发前后的色差值呈现逐渐下降趋势,但下降幅度并不大。人工老化和自然老化结果均表明,外壳层添加木粉后W-CP-WPC的耐疲劳时间延长了,因为木粉自身也含有对紫外线光敏的组分,这些组分可吸收一部分紫外线进而延长了试件的耐疲劳时间。从复合材料性能和外观的角度看,壳层添加适量木粉是CP-WPC的最佳制备方法。
【学位授予单位】:东北林业大学
【学位级别】:博士
【学位授予年份】:2018
【分类号】:TB332
【参考文献】
相关期刊论文 前10条
1 刘源;谷岩;李莹;;木塑复合材料在室内设计中的应用[J];住宅科技;2015年09期
2 杨文斌;文月琴;徐建锋;;可逆热致变色木塑复合材料的制备及性能表征[J];森林与环境学报;2015年03期
3 毕馨予;吴智慧;;木塑复合材料在室内家具中的应用[J];家具;2015年04期
4 郭垂根;陈永祥;白钢;李丽萍;;改性炭黑/膨胀石墨/聚磷酸铵阻燃木塑复合材料的性能研究[J];材料导报;2015年08期
5 陈伟龙;沈鸿烈;王威;李金泽;;WO_3-TiO_2-ZnO溶胶的制备及其光致变色性能研究[J];人工晶体学报;2014年12期
6 徐建锋;杨文斌;吴秋宁;;热致可逆变色木塑复合材料的研究进展[J];材料导报;2014年S2期
7 黄润州;冒海燕;KIM Brimjune;WU Qinglin;;共挤出型芯—表结构木塑复合材料弯曲性能与热膨胀性能的研究[J];浙江林业科技;2014年06期
8 徐海兵;何亭;唐明静;彭雪峰;邓建国;;光致变色金属(Ru,Pt,Ln)-二芳基乙烯分子开关[J];科学通报;2014年30期
9 郭丽敏;王伟宏;王清文;;木粉-HDPE复合材料的单板贴面效果研究[J];西南林业大学学报;2014年05期
10 原浩杰;张寿春;吕春祥;;上浆剂对碳纤维复合材料界面结合影响的研究进展[J];化工新型材料;2014年10期
相关博士学位论文 前8条
1 明亮;有机光致变色材料及二芳乙烯基苯类荧光材料的合成与性能研究[D];上海交通大学;2014年
2 刘天;增强壳层结构共挤出HDPE基木塑复合材料性能研究[D];东北林业大学;2014年
3 蒋汇川;可逆温致变色功能薄木的制备与性能研究[D];中国林业科学研究院;2013年
4 黄润州;芯—表结构木塑复合材料机械性能与热膨胀性能的研究[D];南京林业大学;2012年
5 郭继玺;吡唑啉酮类光致变色化合物的合成及机理研究[D];新疆大学;2011年
6 苏润洲;木质材料表面装饰用材的光致变色机理的研究[D];东北林业大学;2011年
7 刘志佳;温致变色木材的制备和机理研究[D];中国林业科学研究院;2010年
8 毛华平;光致变色分子开关的设计、合成及性质的研究[D];吉林大学;2006年
相关硕士学位论文 前10条
1 钱亦张;杂多酸基LbL复合膜制备及光致变色性能研究[D];吉林大学;2016年
2 易照丰;塑木材料在室内外环境中的运用研究[D];中南林业科技大学;2015年
3 池冰;彩色木塑复合材料的制备及耐老化性能研究[D];四川农业大学;2015年
4 杨旭;光致变色材料在现代运动便装设计中的应用[D];天津科技大学;2015年
5 王壬禹;木塑复合材料表面仿木纹理设计研究[D];东北林业大学;2014年
6 王晶晶;耐老化和抗菌型木塑复合材料的开发[D];东北林业大学;2014年
7 陆川;细菌纤维素光致变色功能柔性膜的制备及性能[D];东华大学;2014年
8 吴秋宁;可逆热致变色竹塑复合材料的研究[D];福建农林大学;2013年
9 周吉;螺VA嗪光致变色材料的合成与性能研究[D];华东理工大学;2013年
10 李永欣;1,3,3-三甲基螺[吲哚啉-2,3'-2-[3H]萘并[2,1-b][1,4]VA嗪]的合成及其变色性能研究[D];中南大学;2012年
本文编号:
2743842
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2743842.html