小型化超材料电磁结构设计及应用
发布时间:2021-01-18 15:59
超材料(MM)是一种人工材料,在工程上用于改变电磁波在结构上的入射特性。这类材料已经应用在从低频到高频(微波波段到光学波段)的广泛应用中,并且展现出了巨大的潜力。超表面(MS)是一类独特的平面超材料,在结构上具有光学意义的薄而致密的二维单元阵列。由于其亚波长的结构尺寸,超表面可以用于设计紧凑型设备和电路,例如滤波器、天线、耦合器等。由于便携式设备,如笔记本电脑、平板电脑、移动电话等,要求降低重量和减小体积以提高便携性。因此,小型化和紧凑化是高端手持设备的基本要求。此外,实现宽频带、高增益、低传输线损耗和信号完整性是先进设备和系统面临的关键挑战。基于上述背景,本研究探讨微波频率下的超材料激发结构在微波频段的滤波应用。由于优质材料的采用、制造工艺的日新月异和先进的计算机辅助设计(CAD)工具的发展,高效滤波器的设计和实现在当今已不再是难题。此外,更新颖且更高效的滤波器的实现更是获益良多。考虑到其广泛的应用,本文首先研究涉空间滤波器,即电磁学领域广泛研究的频率选择表面(FSS)。这是一种在介质基板上设计出平面金属阵列单元(贴片或孔径)的二维周期结构,在一定的谐振频率下表现出透射和反射特性。庞...
【文章来源】:北京科技大学北京市 211工程院校 教育部直属院校
【文章页数】:157 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
List of Abbreviations
Chapter 1 Introduction
1.1 History Overview of Metamaterials
1.2 Metamaterials Definition and Background of Research
1.2.1 Double Positive Materials
1.2.2 Negative Epsilon Materials
1.2.3 Negative Mu Materials
1.2.4 Double Negative Materials
1.3 Metasurfaces
1.3.1 Types of MSs
1.4 Metasurfaces versus Bulk Metamaterials
1.5 Significance of Research
1.6 Motivation for Research
1.7 Problem Formulations and Statements
1.8 Objectives of Research
1.9 Methods for Analysis and Characterization of FSS and Spoof SPP
1.9.1 Numerical Simulations
1.9.2 Experimental Verification
1.9.3 Scattering Parameters
1.10 Organisation of thesis
Chapter 2 Literature Review
2.1 Introduction
2.2 Frequency Selective Surfaces
2.2.1 Periodic Structures
2.2.2 The functionality of FSSs
2.2.3 Principle of Periodic Structures
2.2.4 History and Significant Advances of FSS
2.2.5 Applications of FSS
2.2.6 Classification of FSSs
2.2.7 Basic Element Type FSSs
2.2.8 Convoluted or Meandered FSSs
2.2.9 Fractal based FSSs
2.2.10 Single layer FSSs
2.2.11 Multilayer FSSs
2.2.12 Antenna-Filter-Antenna FSSs
2.2.13 Selection of FSSs based on Classification and Performance
2.2.14 Future challenges and potential applications of FSSs
2.3 Plasmonics and Propagation of light in Metals
2.3.1 Spoof Surface Plasmon Polaritons
2.3.2 Planar Spoof SPP Structures
2.3.3 Importance of Spoof SPPs Studies
2.3.4 Problems in Transmission Through Spoof SPPs Devices
2.3.5 Spoof SPPs for High Speed Circuits
2.3.6 Theory of Surface Plasmon Polaritons-Dispersion Relation
2.3.7 Spoof SPPs Transmission Line Generic Structure
2.3.8 Earlier Research Review and Analysis
2.4 Conclusion of Chapter
Chapter 3 Broadband third-order AFA based FSS at high oblique AOI
3.1 Background
3.2 Performance characteristics of FSS
3.3 Fractals Geometry and AFA based Array Structures
3.4 Proposed Solution
3.5 Results and Design Analysis
3.6 Conclusion of Chapter
Chapter 4 Miniaturization of FSS based on Fractal Arrays with Square Slots for Enhanced Bandwidth
4.1 Background
4.2 Efficiency requirements of FSSs
4.3 Miniaturization versus BW in Earlier Schemes
4.4 Advanced Concept of AFA design
4.5 Proposed Design Structure and Principle
4.5.1 Proposed Design Structure
4.5.2 Principle and design process
4.6 Simulation Results and Analysis
4.6.1 Effect of Fractal Ratios on Frequency Response
4.6.2 Effect of Central Square Slot on Frequency Response
4.6.3 Effect of varing Incidence Angles on Frequency Response
4.6.4 Effect of Cross Polarization
4.7 Experimental verification and measurement results
4.8 Conclusion of Chapter
Chapter 5 Polarization Insensitive FSS at Ka-band
5.1 Background
5.2 Frequency regimes of X, Ku, K, and Ka-bands
5.3 Proposed FSS Structure and Analysis
5.3.1 Parametric Analysis
5.3.2 Optimized Filter
5.4 Conclusion of Chapter
Chapter 6 Role of Surface Geometric Patterns and Parameters in the Dispersion Relations ofSpoof SPPs at Microwave Frequency
6.1 Manipulation of EM waves through subwavelength Structures
6.1.1 Achieving Spoof SPPs in the Microwave regime
6.2 Dispersion Relations and Analysis
6.2.1 Field Confinement Analysis
6.3 Structure Design of Low-Pass Plasmonic Filter
6.4 Conclusion of Chapter
Chapter 7 Novel Spoof SPPs on Planar Metallic Strip with Periodic Semi-Elliptical Groovesat Microwave Frequency
7.1 Background and Significant Features of plasmonic structures
7.2 Researches on Corrugated plasmonic structures
7.3 Proposed MM Structure with the periodic semi-elliptical groove on the thin metalstrip
7.3.1 Proposed Structure Design and Comparison
7.3.2 Dispersion Graphs
7.3.3 Comparison of different dispersion relations
7.3.4 Effect of Structure Parameters on Dispersion Relations
7.4 High-Efficiency Low-Pass Plasmonic Filter Structure Design and Analysis
7.4.1 Dependence of the cutoff frequency on depth of the grooves
7.5 Experimental Verification
7.6 Conclusion of Chapter
Chapter 8 Conclusion of Research
8.1 Research Discussion and conclusion
8.2 Future Work
References
Acknowledgement
作者简历及在学研究成果
学位论文数据集
【参考文献】:
期刊论文
[1]周期性亚波长金属孔阵列的单元结构对称性对其增强光透射特性的影响[J]. 袁志,刘辉,陈志勇,朱卫华,郭玮,王新林. 光子学报. 2015(11)
[2]对称双屏Butterworth型频率选择表面的设计[J]. 徐念喜,冯晓国,梁凤超,王岩松,高劲松. 光学精密工程. 2011(07)
[3]多频段十字分形频率选择表面[J]. 王珊珊,高劲松,梁凤超,王岩松,陈新. 物理学报. 2011(05)
本文编号:2985227
【文章来源】:北京科技大学北京市 211工程院校 教育部直属院校
【文章页数】:157 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
List of Abbreviations
Chapter 1 Introduction
1.1 History Overview of Metamaterials
1.2 Metamaterials Definition and Background of Research
1.2.1 Double Positive Materials
1.2.2 Negative Epsilon Materials
1.2.3 Negative Mu Materials
1.2.4 Double Negative Materials
1.3 Metasurfaces
1.3.1 Types of MSs
1.4 Metasurfaces versus Bulk Metamaterials
1.5 Significance of Research
1.6 Motivation for Research
1.7 Problem Formulations and Statements
1.8 Objectives of Research
1.9 Methods for Analysis and Characterization of FSS and Spoof SPP
1.9.1 Numerical Simulations
1.9.2 Experimental Verification
1.9.3 Scattering Parameters
1.10 Organisation of thesis
Chapter 2 Literature Review
2.1 Introduction
2.2 Frequency Selective Surfaces
2.2.1 Periodic Structures
2.2.2 The functionality of FSSs
2.2.3 Principle of Periodic Structures
2.2.4 History and Significant Advances of FSS
2.2.5 Applications of FSS
2.2.6 Classification of FSSs
2.2.7 Basic Element Type FSSs
2.2.8 Convoluted or Meandered FSSs
2.2.9 Fractal based FSSs
2.2.10 Single layer FSSs
2.2.11 Multilayer FSSs
2.2.12 Antenna-Filter-Antenna FSSs
2.2.13 Selection of FSSs based on Classification and Performance
2.2.14 Future challenges and potential applications of FSSs
2.3 Plasmonics and Propagation of light in Metals
2.3.1 Spoof Surface Plasmon Polaritons
2.3.2 Planar Spoof SPP Structures
2.3.3 Importance of Spoof SPPs Studies
2.3.4 Problems in Transmission Through Spoof SPPs Devices
2.3.5 Spoof SPPs for High Speed Circuits
2.3.6 Theory of Surface Plasmon Polaritons-Dispersion Relation
2.3.7 Spoof SPPs Transmission Line Generic Structure
2.3.8 Earlier Research Review and Analysis
2.4 Conclusion of Chapter
Chapter 3 Broadband third-order AFA based FSS at high oblique AOI
3.1 Background
3.2 Performance characteristics of FSS
3.3 Fractals Geometry and AFA based Array Structures
3.4 Proposed Solution
3.5 Results and Design Analysis
3.6 Conclusion of Chapter
Chapter 4 Miniaturization of FSS based on Fractal Arrays with Square Slots for Enhanced Bandwidth
4.1 Background
4.2 Efficiency requirements of FSSs
4.3 Miniaturization versus BW in Earlier Schemes
4.4 Advanced Concept of AFA design
4.5 Proposed Design Structure and Principle
4.5.1 Proposed Design Structure
4.5.2 Principle and design process
4.6 Simulation Results and Analysis
4.6.1 Effect of Fractal Ratios on Frequency Response
4.6.2 Effect of Central Square Slot on Frequency Response
4.6.3 Effect of varing Incidence Angles on Frequency Response
4.6.4 Effect of Cross Polarization
4.7 Experimental verification and measurement results
4.8 Conclusion of Chapter
Chapter 5 Polarization Insensitive FSS at Ka-band
5.1 Background
5.2 Frequency regimes of X, Ku, K, and Ka-bands
5.3 Proposed FSS Structure and Analysis
5.3.1 Parametric Analysis
5.3.2 Optimized Filter
5.4 Conclusion of Chapter
Chapter 6 Role of Surface Geometric Patterns and Parameters in the Dispersion Relations ofSpoof SPPs at Microwave Frequency
6.1 Manipulation of EM waves through subwavelength Structures
6.1.1 Achieving Spoof SPPs in the Microwave regime
6.2 Dispersion Relations and Analysis
6.2.1 Field Confinement Analysis
6.3 Structure Design of Low-Pass Plasmonic Filter
6.4 Conclusion of Chapter
Chapter 7 Novel Spoof SPPs on Planar Metallic Strip with Periodic Semi-Elliptical Groovesat Microwave Frequency
7.1 Background and Significant Features of plasmonic structures
7.2 Researches on Corrugated plasmonic structures
7.3 Proposed MM Structure with the periodic semi-elliptical groove on the thin metalstrip
7.3.1 Proposed Structure Design and Comparison
7.3.2 Dispersion Graphs
7.3.3 Comparison of different dispersion relations
7.3.4 Effect of Structure Parameters on Dispersion Relations
7.4 High-Efficiency Low-Pass Plasmonic Filter Structure Design and Analysis
7.4.1 Dependence of the cutoff frequency on depth of the grooves
7.5 Experimental Verification
7.6 Conclusion of Chapter
Chapter 8 Conclusion of Research
8.1 Research Discussion and conclusion
8.2 Future Work
References
Acknowledgement
作者简历及在学研究成果
学位论文数据集
【参考文献】:
期刊论文
[1]周期性亚波长金属孔阵列的单元结构对称性对其增强光透射特性的影响[J]. 袁志,刘辉,陈志勇,朱卫华,郭玮,王新林. 光子学报. 2015(11)
[2]对称双屏Butterworth型频率选择表面的设计[J]. 徐念喜,冯晓国,梁凤超,王岩松,高劲松. 光学精密工程. 2011(07)
[3]多频段十字分形频率选择表面[J]. 王珊珊,高劲松,梁凤超,王岩松,陈新. 物理学报. 2011(05)
本文编号:2985227
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2985227.html