Fabrication and Properties of TiALN Based Light Absorbing Co
发布时间:2021-05-07 13:00
本论文主要针对TiAlN系光吸收膜的制备及性能开展研究工作。利用磁控溅射法在铜片和硅片上沉积了具有热稳定的TiAlN选择性光吸收薄膜。通过控制TiAlN薄膜的柱状结构,镀层实现在70℃下对太阳光的高吸收率(0.92)同时还具有低的发射率(0.06)。利用紫外可见分光光度计、扫描电子显微镜、透射电子显微镜、显微拉曼光谱仪和X射线光电子能谱仪测试了薄膜的热稳定性。结果表明,TiAlN选择性吸收薄膜的性能和结构在550℃下保持了高的稳定性。采用直流脉冲磁控溅射工艺对钛靶和铝靶共同溅射,制备出了近似黑体的纳米结构TiAlN超宽频光吸收薄膜。通过控制氮气流量和镀膜工艺参数,获得底层与基体平行的纳米层状结构,外层为具有锥形顶部的纳米柱状结构。研究表明,该结构底层提供较高的附着力,可是镀层在各类基体上稳定生长,外层柱状结构可以使得尽可能多的入射光能够进入到镀膜内部,柱状结构的晶界可为入射光提供多次反射,保证入射光的充分吸收。在200nm2500nm较宽的波长范围内单膜的平均吸收率为0.89,加了减反层后在200nm2500nm较宽的波长范围内吸收率提高到了...
【文章来源】:中国科学院大学(中国科学院宁波材料技术与工程研究所)浙江省
【文章页数】:152 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Chapter 1.Introduction
1.1 Electromagnetic Radiations
1.2 Thermal Radiations
1.3 Solar Radiations
1.4 Propagation of Light through Inhomogeneous Media
1.4.1 Lorenz-Mie Theory
1.4.2 Effective Medium Theory
1.4.3 Kobelka and Munk Theory
1.4.4 Stefan-Boltzmann Law
1.4.5 Planck’s Law
1.4.6 Kirchhoff’s Law
1.5 Conversion of Solar Energy
1.6 Optical Materials
1.7 Selective Solar Absorbers
1.7.1 Historical Background and Industrial Attraction
1.7.2 Understanding and Characterization of Selective Solar Absorber
1.7.3 Ideal Spectral Selectivity
1.7.4 Selective Solar Absorber-State of the Art
1.7.5 Absorber-Reflector Tandem
1.7.5.1 Semiconductor-Reflector Coatings
1.7.5.2 Textured Surface Coatings
1.7.5.3 Multilayer-Metal Coatings
1.7.5.4 Composite Coatings
1.7.6 Stability
1.7.6.1 Performance Criterion
1.7.7 Flat-Plate Collector
1.8 Broadband Absorbers
1.8.1 Historical Background and Industrial Attraction
1.8.2 Understanding and Characterization of Broadband Solar Absorber
1.8.3 Ideal Broadband Solar Absorbers
1.8.4 Broadband Absorbers-State of the Art
1.8.4.1 Plasmonic Materials
1.8.4.2 Nanophotonic Structures
1.8.5 Stability
1.9 Recent Progress in Selective Solar Absorbers
1.10 Recent Progress in Broadband Solar Absorbers
1.11 Future Perspectives
Chapter 2 Experimental Methods
2.1 Thin Film Development
2.2 Sputtering
2.2.1 DC Magnetron Sputtering
2.2.2 Reactive Magnetron Sputtering
2.3 Characterization Techniques
2.3.1 Scanning Electron Microscopy(SEM)
2.3.2 Transmission Electron Microscopy(TEM)
2.3.3 X-ray Diffraction(XRD)
2.3.4 Scanning Probe Microscopy(SPM)
2.3.5 UV-Vis-NIR Spectrophotometry
2.3.6 Fourier Transform Infra-red Spectroscopy(FTIR)
2.3.7 Ellipsometry
2.3.8 Raman Spectroscopy
2.3.9 X-ray Photoelectron Spectroscopy(XPS)
2.3.10 Adhesion Test
2.3.11 Thickness Measurements
2.3.12 Electrochemical Corrosion Study
Chapter 3 Design,Fabrication and Thermal Stability of Spectrally Selective TiAlN/SiO2Tandem Absorber
3.1 Experimental Details
3.2 Results and Discussion
3.2.1 Scanning Electron Microscopy(SEM)
3.2.2 X-ray Diffraction(XRD)
3.2.3 UV-Vis-NIR Spectrophotometry
3.2.4 Ellipsometry
3.3 Thermal Stability
3.3.1 Raman Spectroscopy
3.3.2 X-ray Photoelectron Spectroscopy
3.4 Summary
Chapter 4.Enhancing spectral selectivity of TiAlN/SiO_2 solar absorbing coatings by post deposition annealing
4.1 Experimental Details
4.2 Results and Discussion
4.3 Summary
Chapter 5 Refractory Metal Based Nanophotonic Structures as Broadband Light Absorbers with Robust Stability
5.1 Experimental Details
5.1.1 Materials and Methods
5.1.2 Measurements
5.1.3 Stability Tests
5.2 Results and Discussion
5.2.1 Growth and Structural Analysis
5.2.2 Broadband Absorption
5.2.3 Structural and Absorption Viability
5.2.4 Suppression of Surface Reflections
5.2.5 Stability of VATAN Black Coatings
5.3 Comparison with Literature
5.4 Summary
Chapter 6 Conclusions and Future Work
6.1 Conclusions
6.2 Future Work
Bibliography
Publications
Achievements and Awards
Acknowledgements
本文编号:3173434
【文章来源】:中国科学院大学(中国科学院宁波材料技术与工程研究所)浙江省
【文章页数】:152 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Chapter 1.Introduction
1.1 Electromagnetic Radiations
1.2 Thermal Radiations
1.3 Solar Radiations
1.4 Propagation of Light through Inhomogeneous Media
1.4.1 Lorenz-Mie Theory
1.4.2 Effective Medium Theory
1.4.3 Kobelka and Munk Theory
1.4.4 Stefan-Boltzmann Law
1.4.5 Planck’s Law
1.4.6 Kirchhoff’s Law
1.5 Conversion of Solar Energy
1.6 Optical Materials
1.7 Selective Solar Absorbers
1.7.1 Historical Background and Industrial Attraction
1.7.2 Understanding and Characterization of Selective Solar Absorber
1.7.3 Ideal Spectral Selectivity
1.7.4 Selective Solar Absorber-State of the Art
1.7.5 Absorber-Reflector Tandem
1.7.5.1 Semiconductor-Reflector Coatings
1.7.5.2 Textured Surface Coatings
1.7.5.3 Multilayer-Metal Coatings
1.7.5.4 Composite Coatings
1.7.6 Stability
1.7.6.1 Performance Criterion
1.7.7 Flat-Plate Collector
1.8 Broadband Absorbers
1.8.1 Historical Background and Industrial Attraction
1.8.2 Understanding and Characterization of Broadband Solar Absorber
1.8.3 Ideal Broadband Solar Absorbers
1.8.4 Broadband Absorbers-State of the Art
1.8.4.1 Plasmonic Materials
1.8.4.2 Nanophotonic Structures
1.8.5 Stability
1.9 Recent Progress in Selective Solar Absorbers
1.10 Recent Progress in Broadband Solar Absorbers
1.11 Future Perspectives
Chapter 2 Experimental Methods
2.1 Thin Film Development
2.2 Sputtering
2.2.1 DC Magnetron Sputtering
2.2.2 Reactive Magnetron Sputtering
2.3 Characterization Techniques
2.3.1 Scanning Electron Microscopy(SEM)
2.3.2 Transmission Electron Microscopy(TEM)
2.3.3 X-ray Diffraction(XRD)
2.3.4 Scanning Probe Microscopy(SPM)
2.3.5 UV-Vis-NIR Spectrophotometry
2.3.6 Fourier Transform Infra-red Spectroscopy(FTIR)
2.3.7 Ellipsometry
2.3.8 Raman Spectroscopy
2.3.9 X-ray Photoelectron Spectroscopy(XPS)
2.3.10 Adhesion Test
2.3.11 Thickness Measurements
2.3.12 Electrochemical Corrosion Study
Chapter 3 Design,Fabrication and Thermal Stability of Spectrally Selective TiAlN/SiO2Tandem Absorber
3.1 Experimental Details
3.2 Results and Discussion
3.2.1 Scanning Electron Microscopy(SEM)
3.2.2 X-ray Diffraction(XRD)
3.2.3 UV-Vis-NIR Spectrophotometry
3.2.4 Ellipsometry
3.3 Thermal Stability
3.3.1 Raman Spectroscopy
3.3.2 X-ray Photoelectron Spectroscopy
3.4 Summary
Chapter 4.Enhancing spectral selectivity of TiAlN/SiO_2 solar absorbing coatings by post deposition annealing
4.1 Experimental Details
4.2 Results and Discussion
4.3 Summary
Chapter 5 Refractory Metal Based Nanophotonic Structures as Broadband Light Absorbers with Robust Stability
5.1 Experimental Details
5.1.1 Materials and Methods
5.1.2 Measurements
5.1.3 Stability Tests
5.2 Results and Discussion
5.2.1 Growth and Structural Analysis
5.2.2 Broadband Absorption
5.2.3 Structural and Absorption Viability
5.2.4 Suppression of Surface Reflections
5.2.5 Stability of VATAN Black Coatings
5.3 Comparison with Literature
5.4 Summary
Chapter 6 Conclusions and Future Work
6.1 Conclusions
6.2 Future Work
Bibliography
Publications
Achievements and Awards
Acknowledgements
本文编号:3173434
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/3173434.html