SiC p (Ti 3 AlC 2p )/Al 2 O 3 -GdAlO 3 复合材料组织结构调控及高温自愈合行为
发布时间:2021-08-17 05:00
Al2O3基共晶复合材料是一种极具潜力的工程陶瓷,广泛应用于航空航天先进涡轮发动机和燃气轮机的高温结构部件。通过开发新型低成本陶瓷制备技术与改性方法可以改善其微观组织结构,从而拓展新型Al2O3基共晶陶瓷体系,并提高其热机械性能。本文采用化学共沉淀方法,通过调整反应参数和煅烧温度可以低成本高效合成共晶成分Al2O3-GdAlO3和Al2O3-ZrO2-GdAlO3纳米粉体,研究了煅烧温度对化学共沉淀法所制备纳米共晶Al2O3-GdAlO3和Al2O3-ZrO2-GdAlO3粉体的形貌和结构的影响。α-Al2O3、GdAlO3和t-Z...
【文章来源】:哈尔滨工业大学黑龙江省 211工程院校 985工程院校
【文章页数】:214 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Chapter1 Introduction
1.1 Background and general introduction
1.2 Eutectic ceramic oxides overview
1.2.1 Properties of Al_2O_3 and GdAlO_3 single crystals
1.2.2 Fabrication methods of eutectic ceramic oxides
1.2.3 Microstructural characteristics
1.3 Structure of Ti_3AlC_2 and SiC
1.3.1 Al_2O_3-GdAlO_3 eutectic ceramic
1.3.2 Structure of silicon carbide(SiC)
1.3.3 Structure of Ti_3AlC_2
1.4 Self-healing overview
1.4.1 Research progress of crack self-healing
1.4.2 Mechanisms of self-healing in ceramic materials
1.4.3 Matrix for self-healing material
1.4.4 Factors influencing self-healing of cracks
1.5 Oxidation behavior of Ti_3AlC_2
1.6 Objectives,significance and main contents
Chapter2 Experimental materials and methods
2.1 Introduction
2.2 Raw materials
2.3 Thermodynamic calculations
2.4 Fabrication methods
2.4.1 Powder preparation method
2.4.2 Sintering process
2.4.3 Melting process
2.5 Methods for compositional analysis and microstructural characterization
2.5.1 Relative density analysis
2.5.2 X-ray diffraction(XRD)analysis
2.5.3 Scanning electron microscope(SEM)analysis
2.5.4 Transmission electron microscope(TEM) analysis
2.6 Mechanical properties measurements
2.6.1 Room temperature flexural strength tests
2.6.2 High temperature flexural strength tests
2.6.3 Vickers hardness
2.6.4 Fracture toughness tests
2.7 Thermo-physical properties measurements
2.7.1 Thermal conductivity measurement
2.7.2 Thermal expansion property measurements
2.8 Oxidation behavior of SiC_p(Ti_3AlC_(2p))/Al_2O_3-GdAlO_3 composites
2.9 Self-healing capability in SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
Chapter3 Microstructure and mechanical properties of Al_2O_3-GdAlO_3 based ceramics
3.1 Introduction
3.2 Powder characterization
3.2.1 Characterization of Al_2O_3-GdAlO_3 ceramic powders
3.2.2 Characterization of Al_2O_3-GdAlO_3-ZrO2 ceramic powders
3.3 Relative density,phase composition and microstructural characterization of Al_2O_3-GdAlO_3 based ceramics
3.3.1 Relative density of Al_2O_3-GdAlO_3 composites
3.3.2 Relative density of Al_2O_3-GdAlO_3-ZrO2 composites
3.3.3 Microstructure of Al_2O_3-GdAlO_3 based ceramics
3.3.4 Microstructure of Al_2O_3-GdAlO_3-ZrO2 composites
3.4 Mechanical properties of Al_2O_3-GdAlO_3 based ceramics
3.4.1 Mechanical properties of Al_2O_3-GdAlO_3 composites
3.4.2 Mechanical properties of Al_2O_3-GdAlO_3-ZrO2 composites
3.5 Thermo-physical properties of Al_2O_3- GdAlO_3 based ceramics
3.5.1 Thermo-physical properties of Al_2O_3-GdAlO_3 composites
3.5.2 Thermo-physical properties of Al_2O_3-ZrO2-GdAlO_3 composites
3.6 Melting process and microstructure evolution of Al_2O_3-GdAlO_3 ceramic
3.6.1 One-step melting process
3.6.2 Two-step melting process
3.6.3 Transition from irregular to regular microstructure
3.6.4 TEM analysis of melted Al_2O_3-GdAlO_3 eutectic
3.6.5 Micrustructural stability
3.7 Summary
Chapter4 Microstructure and mechanical properties of SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
4.1 Introduction
4.2 Thermodynamic considerations in composites design
4.2.1 Possible reactions in the case of thermal decomposition of Ti_3AlC_2 MAX phase and different composites
4.2.2 The Gibbs free energy changes
4.3 Densification and phase constituent of SiC p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
4.3.1 Densification and phase constituent Al_2O_3-GdAlO_3-SiC composites
4.3.2 Densification and phase constituent of Al_2O_3-GdAlO_3-Ti_3AlC_2
4.4 Microstructural characterization of SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
4.4.1 Microstructural characterization of Al_2O_3-GdAlO_3-SiC
4.4.2 Microstructural characterization of Al_2O_3-GdAlO_3-Ti_3AlC_2
4.5 Mechanical properties of SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
4.5.1 Mechanical properties of Al_2O_3-GdAlO_3-SiC
4.5.2 Mechanical properties of Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
4.6 Summary
Chapter5 Oxidation and self-healing behaivor of SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
5.1 Introduction
5.2 Thermodynamic considerations of oxidation in Al_2O_3-GdAlO_3 based composites
5.2.1 Oxidation in Al_2O_3-GdAlO_3-SiC composites
5.2.2 Oxidation in Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
5.3 Volume expansion upon oxidation
5.4 Oxidation kinetics of Al_2O_3-GdAlO_3 based composites
5.4.1 Oxidation kinetics of Al_2O_3-GdAlO_3-SiC composites
5.4.2 Oxidation kinetics of Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
5.5 Phase constituents of oxidized surfaces on Al_2O_3-GdAlO_3 based composites
5.5.1 Phase constituents of oxidized surfaces on Al_2O_3-GdAlO_3-SiC composites
5.5.2 Phase constituents of oxidized surfaces on Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
5.6 Surface and Cross-section morphology of Al_2O_3-GdAlO_3 based composites
5.6.1 Surface morphologies of oxidized Al_2O_3-GdAlO_3-SiC composites
5.6.2 Surface morphologies of oxidized Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
5.6.3 Cross-section morphologies of oxidized Al_2O_3-GdAlO_3-SiC composites
5.6.4 Cross-section morphologies of oxidized Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
5.7 Effect of oxidation on flexural strength of Al_2O_3–GdAlO_3 based composites
5.7.1 Flexural strength of oxidized Al_2O_3-GdAlO_3-SiC composites
5.7.2 Flexural strength of oxidized Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
5.8 Self-healing behavior of Al_2O_3–GdAlO_3 based composites
5.8.1 Crack self-healing ability of SiC and Ti_3AlC_2 particles
5.8.2 Crack morphology after self-healing of SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
5.8.3 Effect of annealing temperature and time on the self-healing characteristic of SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO
5.8.4 Self-healing mechanism in SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
5.9 Summary
Conclusions
References
List of Publications
Acknowledgements
Resume
【参考文献】:
期刊论文
[1]Layered Machinable and Electrically Conductive Ti2AlC and Ti3AlC2 Ceramics:a Review[J]. X.H.Wang and Y.C.Zhou Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China. Journal of Materials Science & Technology. 2010(05)
[2]增韧Al2O3结构陶瓷氧化反应裂纹愈合动力学研究——(Ⅰ)理论模型[J]. 吕珺,郑治祥,吴玉程,金志浩. 无机材料学报. 2006(01)
本文编号:3347107
【文章来源】:哈尔滨工业大学黑龙江省 211工程院校 985工程院校
【文章页数】:214 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Chapter1 Introduction
1.1 Background and general introduction
1.2 Eutectic ceramic oxides overview
1.2.1 Properties of Al_2O_3 and GdAlO_3 single crystals
1.2.2 Fabrication methods of eutectic ceramic oxides
1.2.3 Microstructural characteristics
1.3 Structure of Ti_3AlC_2 and SiC
1.3.1 Al_2O_3-GdAlO_3 eutectic ceramic
1.3.2 Structure of silicon carbide(SiC)
1.3.3 Structure of Ti_3AlC_2
1.4 Self-healing overview
1.4.1 Research progress of crack self-healing
1.4.2 Mechanisms of self-healing in ceramic materials
1.4.3 Matrix for self-healing material
1.4.4 Factors influencing self-healing of cracks
1.5 Oxidation behavior of Ti_3AlC_2
1.6 Objectives,significance and main contents
Chapter2 Experimental materials and methods
2.1 Introduction
2.2 Raw materials
2.3 Thermodynamic calculations
2.4 Fabrication methods
2.4.1 Powder preparation method
2.4.2 Sintering process
2.4.3 Melting process
2.5 Methods for compositional analysis and microstructural characterization
2.5.1 Relative density analysis
2.5.2 X-ray diffraction(XRD)analysis
2.5.3 Scanning electron microscope(SEM)analysis
2.5.4 Transmission electron microscope(TEM) analysis
2.6 Mechanical properties measurements
2.6.1 Room temperature flexural strength tests
2.6.2 High temperature flexural strength tests
2.6.3 Vickers hardness
2.6.4 Fracture toughness tests
2.7 Thermo-physical properties measurements
2.7.1 Thermal conductivity measurement
2.7.2 Thermal expansion property measurements
2.8 Oxidation behavior of SiC_p(Ti_3AlC_(2p))/Al_2O_3-GdAlO_3 composites
2.9 Self-healing capability in SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
Chapter3 Microstructure and mechanical properties of Al_2O_3-GdAlO_3 based ceramics
3.1 Introduction
3.2 Powder characterization
3.2.1 Characterization of Al_2O_3-GdAlO_3 ceramic powders
3.2.2 Characterization of Al_2O_3-GdAlO_3-ZrO2 ceramic powders
3.3 Relative density,phase composition and microstructural characterization of Al_2O_3-GdAlO_3 based ceramics
3.3.1 Relative density of Al_2O_3-GdAlO_3 composites
3.3.2 Relative density of Al_2O_3-GdAlO_3-ZrO2 composites
3.3.3 Microstructure of Al_2O_3-GdAlO_3 based ceramics
3.3.4 Microstructure of Al_2O_3-GdAlO_3-ZrO2 composites
3.4 Mechanical properties of Al_2O_3-GdAlO_3 based ceramics
3.4.1 Mechanical properties of Al_2O_3-GdAlO_3 composites
3.4.2 Mechanical properties of Al_2O_3-GdAlO_3-ZrO2 composites
3.5 Thermo-physical properties of Al_2O_3- GdAlO_3 based ceramics
3.5.1 Thermo-physical properties of Al_2O_3-GdAlO_3 composites
3.5.2 Thermo-physical properties of Al_2O_3-ZrO2-GdAlO_3 composites
3.6 Melting process and microstructure evolution of Al_2O_3-GdAlO_3 ceramic
3.6.1 One-step melting process
3.6.2 Two-step melting process
3.6.3 Transition from irregular to regular microstructure
3.6.4 TEM analysis of melted Al_2O_3-GdAlO_3 eutectic
3.6.5 Micrustructural stability
3.7 Summary
Chapter4 Microstructure and mechanical properties of SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
4.1 Introduction
4.2 Thermodynamic considerations in composites design
4.2.1 Possible reactions in the case of thermal decomposition of Ti_3AlC_2 MAX phase and different composites
4.2.2 The Gibbs free energy changes
4.3 Densification and phase constituent of SiC p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
4.3.1 Densification and phase constituent Al_2O_3-GdAlO_3-SiC composites
4.3.2 Densification and phase constituent of Al_2O_3-GdAlO_3-Ti_3AlC_2
4.4 Microstructural characterization of SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
4.4.1 Microstructural characterization of Al_2O_3-GdAlO_3-SiC
4.4.2 Microstructural characterization of Al_2O_3-GdAlO_3-Ti_3AlC_2
4.5 Mechanical properties of SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
4.5.1 Mechanical properties of Al_2O_3-GdAlO_3-SiC
4.5.2 Mechanical properties of Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
4.6 Summary
Chapter5 Oxidation and self-healing behaivor of SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
5.1 Introduction
5.2 Thermodynamic considerations of oxidation in Al_2O_3-GdAlO_3 based composites
5.2.1 Oxidation in Al_2O_3-GdAlO_3-SiC composites
5.2.2 Oxidation in Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
5.3 Volume expansion upon oxidation
5.4 Oxidation kinetics of Al_2O_3-GdAlO_3 based composites
5.4.1 Oxidation kinetics of Al_2O_3-GdAlO_3-SiC composites
5.4.2 Oxidation kinetics of Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
5.5 Phase constituents of oxidized surfaces on Al_2O_3-GdAlO_3 based composites
5.5.1 Phase constituents of oxidized surfaces on Al_2O_3-GdAlO_3-SiC composites
5.5.2 Phase constituents of oxidized surfaces on Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
5.6 Surface and Cross-section morphology of Al_2O_3-GdAlO_3 based composites
5.6.1 Surface morphologies of oxidized Al_2O_3-GdAlO_3-SiC composites
5.6.2 Surface morphologies of oxidized Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
5.6.3 Cross-section morphologies of oxidized Al_2O_3-GdAlO_3-SiC composites
5.6.4 Cross-section morphologies of oxidized Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
5.7 Effect of oxidation on flexural strength of Al_2O_3–GdAlO_3 based composites
5.7.1 Flexural strength of oxidized Al_2O_3-GdAlO_3-SiC composites
5.7.2 Flexural strength of oxidized Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
5.8 Self-healing behavior of Al_2O_3–GdAlO_3 based composites
5.8.1 Crack self-healing ability of SiC and Ti_3AlC_2 particles
5.8.2 Crack morphology after self-healing of SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
5.8.3 Effect of annealing temperature and time on the self-healing characteristic of SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO
5.8.4 Self-healing mechanism in SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
5.9 Summary
Conclusions
References
List of Publications
Acknowledgements
Resume
【参考文献】:
期刊论文
[1]Layered Machinable and Electrically Conductive Ti2AlC and Ti3AlC2 Ceramics:a Review[J]. X.H.Wang and Y.C.Zhou Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China. Journal of Materials Science & Technology. 2010(05)
[2]增韧Al2O3结构陶瓷氧化反应裂纹愈合动力学研究——(Ⅰ)理论模型[J]. 吕珺,郑治祥,吴玉程,金志浩. 无机材料学报. 2006(01)
本文编号:3347107
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/3347107.html