大型船舶推进轴系功率流分析理论与方法研究
本文关键词:大型船舶推进轴系功率流分析理论与方法研究 出处:《武汉理工大学》2014年博士论文 论文类型:学位论文
更多相关文章: 大型船舶 推进轴系 轴系校中 船体变形 轴承强制位移 功率流分析(PFA) 功率键合图
【摘要】:船舶动力装置是各种能量产生、传递、消耗的全部机械设备及系统的有机组合体,其主要任务是为船舶提供各种能量,为船舶的正常航行、作业、战斗和其他需要提供推进动力和二次能源,,视为船舶的“心脏”。近年来,大型、超大型船舶数量占世界远洋船舶总量的比例越来越大,船舶发展的大型化既是各国海洋运输经济发展的迫切需要,也是前沿的船舶基础理论和先进的船舶建造技术支持的产物。大型船舶推进轴系状态监测理论与方法研究是目前尚未完全攻克的难题之一,对船舶安全航行有一定的理论指导意义与实用价值。通过对大型船舶推进轴系功率能流分布特性的研究,实时掌握船舶推进轴系能流动态分布特性、功率流传递等技术状态信息,揭示船舶推进系统动力学特性,与经典的振动分析、油液分析理论等方法手段相比,基于功率流的方法更易于解释能量的分布与传输机理。 本文以大型船舶推进轴系为研究对象,主要研究工作如下: (1)对船舶轴系运行特性及其影响因素进行了分析。分析总结了船舶推进轴系螺旋桨激振力公式、柴油机激振力经验公式和理论计算方法,分析了激振力对推进轴系的影响。以8530TEU集装箱船推进轴系为研究对象,给出了其在额定转速下螺旋桨旋转一周各方向螺旋桨轴承力的变化特性值。研究了船舶推进轴系各个轴承垂直位移的影响因素。指出,轴系惯性载荷、轴系初始校中、螺旋桨激振力、受波浪载荷作用下船体的变形等均会导致不同程度的轴系各轴承的强制位移。研究了轴承油膜的刚度、阻尼、油膜力、轴承油膜等效轴承位移等动力学特性。 (2)提出了大型船舶推进轴系在纵向振动、扭转振动、回旋振动及耦合振动下基于功率流理论的轴系能流分布的计算方法。根据功率流理论,分别给出了典型杆件在拉压、扭转和弯曲作用下的动力学方程、本构方程、位移-应变关系、位移-速度关系、边界条件等,推导了能流密度矢量关系式、能流位关系式与能量方程。结合键合图理论,建立了8530TEU集装箱船推进轴系的键合图模型。基于上述理论,推导了不同边界条件下轴系在纵向振动、扭转振动、回旋振动和耦合振动下的功率流计算公式。 (3)建立了轴系在“船体-轴承-油膜-轴”耦合下的非线性简化物理模型及线性简化物理模型,分别推导了“船体-轴承-油膜-轴”耦合控制方程,并对该耦合模型的功率流传递特性进行了分析。 (4)利用有限元方法建立了8530TEU集装箱船轴系的有限元模型。基于有限元方法,以8530TEU集装箱船推进轴系为例,研究了轴系在惯性载荷、螺旋桨激振力、轴承合理校中等条件下的轴系垂直位移分布、转矩分布、应力应变分布、应变能分布等能流分布特性及规律。 (5)开发了一种基于磁耦合共振技术的非接触式无线感应供电装置,以实现轴系监测装置对能量信号的不停机连续在线监测,从而获得在船舶推进轴系性能综合试验平台上及在实船测试中的数据可靠采集,提高船舶推进轴系性能参数测试方法的精度。在船舶推进轴系性能试验平台上对无线感应供电装置、轴系轴功率进行了测试。同时,在某船柴油机飞轮端轴系扭振、纵振进行了测试并对测试数据进行了分析。 综上,本文结合功率流理论,对船舶推进轴系的运行特性和动力响应进行分析,推导船舶推进轴系各子系统耦合的功率流分布计算公式,从理论分析与有限元仿真的角度研究典型轴系宏观功率分布与微观功率流传递的能流分布特征,提出大型船舶推进轴系能流分布状态监测理论,为大型船舶推进轴系优化设计、安装、性能监测与维护提供方法与技术支持,也为延长船舶使用寿命而进行的修理和保养提供合理依据。
[Abstract]:Marine power plant is a variety of energy production, transmission, consumption of the organic combination of all machinery and equipment and system, its main task is to provide energy for the ship, for normal navigation, ship operations, combat and other needs to provide propulsion and energy two times, as the heart of the ship. In recent years, large the number of ships, large proportion of the total share of world shipping more and more, the urgent need for the development of large-scale national marine economic development is not only the product technical support ship construction is basic theory frontier and advanced ship. The large ship propulsion shafting condition monitoring theory and method research is one of the most difficult problem has not yet been completely overcome, have a certain theoretical significance and practical value for the safe navigation of the ship. Through the study on energy flow distribution characteristics of large ship propulsion shafting power, real-time palm Hold the energy flow of ship propulsion shafting dynamic characteristic, power flow transmission technology status information, reveal the ship propulsion system dynamics, the classical vibration analysis and oil analysis, compared with the theory method, method based on power flow more easily explain the distribution and transmission mechanism of energy.
The main research work of this paper is on the propulsion shafting of large ships. The main research work is as follows:
(1) the operating characteristics and influencing factors of ship shafting are analyzed. Analyzed and summarized the formula of ship propulsion shafting propeller exciting force, the calculation method of diesel engine vibration force experience formula and theory, analyzed the influence of vibration force on the shafting. The propulsion shafting as the research object to the 8530TEU container ship, the change in characteristics under the rated speed of propeller rotation direction of the propeller bearing force is given. The effects of some factors on ship propulsion shafting bearing various vertical displacement. Pointed out that the shaft inertial load, initial alignment of shafting and propeller exciting force, the wave load of hull deformation will lead to different degrees of forced displacement of shafting each bearing. The bearing oil film stiffness, damping, oil film bearing oil film force, equivalent bearing displacement dynamic characteristics.
(2) the large ship propulsion shafting torsional vibration in longitudinal vibration, vibration and coupled vibration of shafting under the cyclotron theory of power flow calculation method based on the distribution of energy flow. According to the theory of power flow, which gives the typical rod in tension and compression, the dynamic equations of torsion and bending, the constitutive equation. The stress displacement relation, displacement velocity relationship, boundary condition, derived the energy flow density vector relation, a relation between energy flow and energy equations. Combining with the bond graph theory, established the 8530TEU container ship shafting bond graph model. Based on the above theory, deduced under different boundary conditions of shafting torsional vibration in the longitudinal vibration, calculation formula of power swing vibration and coupled vibration of the flow.
(3) a nonlinear simplified physical model and a linear simplified physical model of shafting under the coupling of hull bearing oil film axis are established. The coupled governing equations of hull bearing oil film shaft are deduced respectively, and the power flow transmission characteristics of the coupling model are analyzed.
(4) a finite element 8530TEU container ship shafting model using finite element method. Based on the finite element method, the 8530TEU container ship propulsion shafting as an example, studied the shafting in inertial loading, propeller exciting force, bearing under the condition of reasonable secondary school shafting vertical displacement, torque distribution, stress and strain distribution. The strain energy distribution of energy flow distribution characteristics and the law.
(5) developed a non-contact wireless inductive power supply device based on magnetic coupling resonance technology, to realize the shafting monitoring device for energy signal of non-stop online monitoring, resulting in ship propulsion shafting performance and comprehensive test platform in real ship test of reliable data acquisition, enhanced propulsion test method the performance parameters of the shafting precision. The performance of the propulsion test platform of shafting wireless inductive power supply device in ship shafting shaft power were tested. At the same time, in a ship diesel engine flywheel shafting torsional vibration, longitudinal vibration is tested and the test data are analyzed.
In summary, this paper combines the theory of power flow, operation characteristics and dynamic response analysis of shafting of ship propulsion, ship propulsion shafting derived power coupled subsystems flow distribution calculation formula, from the theoretical analysis and finite element simulation of typical macro and micro power distribution system power flow can flow distribution, put forward the large ship propulsion shafting energy distribution monitoring theory for large ship propulsion shafting design, installation, performance monitoring and maintenance methods and provide technical support, repair and maintenance to provide a reasonable basis for extending the service life of the ship.
【学位授予单位】:武汉理工大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:U664.21
【参考文献】
相关期刊论文 前10条
1 周瑞平,张升平,杨建国;三弯矩方程的改进及在船舶轴系动态校中中的应用[J];船舶工程;2003年01期
2 周瑞平,徐立华,张f平,黄政;船舶推进轴系校中若干技术问题研究[J];船舶工程;2004年06期
3 朱汉华;严新平;刘正林;范世东;;油膜力耦合下质量偏心对船舶轴系振动的影响[J];船舶工程;2008年02期
4 贺云南;何琳;吕志强;束立红;;功率流有限元法结果分析辐射噪声[J];船舶力学;2006年05期
5 李胜忠;李斌;赵峰;李力枫;;VIRTUE计划研究进展综述[J];船舶力学;2009年04期
6 朱汉华;张绪猛;刘正林;严新平;温诗铸;范世东;;润滑耦合下冲击引起的轴系弯扭振动特性分析[J];船舶力学;2010年Z1期
7 曹龙汉,曹长修,孙颖楷,景有泉,郭振;柴油机故障诊断技术的现状及展望[J];重庆大学学报(自然科学版);2001年06期
8 李美荣;;铁谱分析技术及其在工程机械故障诊断中的应用[J];桂林航天工业高等专科学校学报;2009年01期
9 ;Research on the Correlation Between Oil Menitoring and Vibration Monitoring in Information Collecting and Processing Monitoring[J];International Journal of Plant Engineering and Management;2004年01期
10 曹贻鹏;张文平;;使用动力吸振器降低轴系纵振引起的水下结构辐射噪声研究[J];哈尔滨工程大学学报;2007年07期
相关博士学位论文 前3条
1 朱翔;裂纹损伤结构的振动功率流特性与损伤识别[D];华中科技大学;2007年
2 冯伟;基于摩擦学与动力学的齿轮系统故障诊断相关性研究[D];华南理工大学;2010年
3 徐翔;船舶复杂推进轴系耦合振动理论及试验研究[D];武汉理工大学;2012年
本文编号:1380221
本文链接:https://www.wllwen.com/kejilunwen/chuanbolw/1380221.html