基于惯性测量与组合预测的舰船瞬时线运动计算方法研究
本文选题:SINS + 运动分离 ; 参考:《东南大学》2015年硕士论文
【摘要】:舰船在航行过程中受到海浪、海风以及其它干扰力的激励,将会产生六自由度的摇荡运动,对舰载机着舰、武器控制以及舰员和舰载设备等均产生不利影响。实时求取出舰船振荡信息,并对未来一段时间内的舰船振荡运动进行预测,以供舰载机及时调整路径,可避免起飞和降落过程中事故的发生,从而提高舰载机的生存能力。本文主要针对舰船振荡运动的分离与预测等相关问题展开研究。首先,详细分析了舰船在海上航行的运动状态,研究了海浪波的形成机理以及海浪波的建模方法,给出了舰船瞬时摇荡运动的模型方程,该方法比单一频率的建模要更接近实际情况。详细阐述了用于振荡运动测量的捷联式惯性导航系统(SINS)的解算原理,给出了增加振荡运动测量的SINS导航解算方法;通过对振荡运动解算结果中的频率成分的分析,给出了基于数字滤波的振荡运动提取方法。其次,分析并比较了IIR数字滤波器和FIR数字滤波器性能特点,选择了延迟时间较短的IIR数字滤波器作为振荡运动分离滤波工具。详细阐述了11R滤波器的工作原理和设计过程,以及基于解算结果频率组成的滤波器参数的选取方法。仿真验证了所设计滤波器的有效性。最后,针对舰船振荡运动的随机性及非线性特性,选取具有非线性、自适应性、自学习能力以及数据融合能力的神经网络方法对舰船振荡运动进行预测。仿真分析、比较了BP神经网络、RBF神经网络和BP-RBF组合神经网络三种预测方法对舰船三轴振荡运动的预测能力。仿真实验结果表明:BP-RBF组合预测方法既具有RBF网络的学习收敛速度的快速性,又具有BP网络的泛化性能。综合认为,在一定条件下组合预测方法比单一预测方法具有优势,可在保证预测精度的基础上提高了预测速度。
[Abstract]:During the course of navigation, the ship is stimulated by waves, sea winds and other disturbance forces, which will produce a six-degree-of-freedom rocking motion, which will have a negative impact on the landing, weapon control, crew and shipboard equipment of the carrier aircraft.The ship oscillation information can be extracted in real time and the ship oscillation motion in the future can be predicted so that the carrier aircraft can adjust the path in time to avoid the accidents during take-off and landing and thus improve the survivability of the carrier aircraft.In this paper, the separation and prediction of ship oscillating motion are studied.First of all, the motion state of ship sailing at sea is analyzed in detail, the formation mechanism of wave wave and the modeling method of wave wave are studied, and the model equation of ship instantaneous rocking motion is given.The method is closer to the actual situation than the modeling of a single frequency.The calculation principle of strapdown inertial navigation system (sins) for oscillatory motion measurement is described in detail, and the SINS navigation method for increasing oscillatory motion measurement is given, and the frequency components in the result of oscillatory motion measurement are analyzed.A method for extracting oscillatory motion based on digital filtering is presented.Secondly, the characteristics of IIR digital filter and FIR digital filter are analyzed and compared, and IIR digital filter with short delay time is chosen as the tool of oscillatory motion separation filter.The working principle and design process of 11R filter are described in detail, and the method of selecting filter parameters based on the frequency component of the calculated results is also presented.The effectiveness of the designed filter is verified by simulation.Finally, according to the randomness and nonlinear characteristics of ship oscillation motion, a neural network method with nonlinear, adaptive, self-learning ability and data fusion ability is selected to predict the ship oscillation motion.The prediction ability of BP neural network and BP-RBF combined neural network for ship triaxial oscillation motion is compared.The simulation results show that the proposed method not only has the rapidity of learning convergence rate of RBF network, but also has the generalization performance of BP network.It is concluded that the combined forecasting method is superior to the single prediction method under certain conditions, and the prediction speed can be improved on the basis of ensuring the prediction accuracy.
【学位授予单位】:东南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U674.70
【相似文献】
相关期刊论文 前10条
1 王凡,孟立凡;关于使用神经网络推定操作者疲劳的研究[J];人类工效学;2004年03期
2 常国任;李仁松;沈医文;刘钢;;基于神经网络的直升机舰面系统效能评估[J];舰船电子工程;2007年03期
3 陈俊;;神经网络的应用与展望[J];佛山科学技术学院学报(自然科学版);2009年05期
4 许万增;;神经网络的研究及其应用[J];国际技术经济研究学报;1990年01期
5 张军华;神经网络技术及其在军用系统中的应用[J];现代防御技术;1992年04期
6 雷明,李作清,陈志祥,吴雅,杨叔子;神经网络在预报控制中的应用[J];机床;1993年11期
7 靳蕃;神经网络及其在铁道科技中应用的探讨[J];铁道学报;1993年02期
8 宋玉华,王启霞;神经网络诊断──神经网络在自动化领域里的应用[J];中国仪器仪表;1994年03期
9 魏铭炎;国内外神经网络技术的研究与应用概况[J];电机电器技术;1995年04期
10 王中贤,,钱颂迪;神经网络法在经济管理中的应用[J];航天工业管理;1995年04期
相关会议论文 前10条
1 徐春玉;;基于泛集的神经网络的混沌性[A];1996中国控制与决策学术年会论文集[C];1996年
2 周树德;王岩;孙增圻;孙富春;;量子神经网络[A];2003年中国智能自动化会议论文集(上册)[C];2003年
3 罗山;张琳;范文新;;基于神经网络和简单规划的识别融合算法[A];2009系统仿真技术及其应用学术会议论文集[C];2009年
4 郭爱克;马尽文;丁康;;序言(二)[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年
5 钟义信;;知识论:神经网络的新机遇——纪念中国神经网络10周年[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年
6 许进;保铮;;神经网络与图论[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年
7 金龙;朱诗武;赵成志;陈宁;;数值预报产品的神经网络释用预报应用[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年
8 田金亭;;神经网络在中学生创造力评估中的应用[A];第十二届全国心理学学术大会论文摘要集[C];2009年
9 唐墨;王科俊;;自发展神经网络的混沌特性研究[A];2009年中国智能自动化会议论文集(第七分册)[南京理工大学学报(增刊)][C];2009年
10 张广远;万强;曹海源;田方涛;;基于遗传算法优化神经网络的故障诊断方法研究[A];第十二届全国设备故障诊断学术会议论文集[C];2010年
相关重要报纸文章 前10条
1 美国明尼苏达大学社会学博士 密西西比州立大学国家战略规划与分析研究中心资深助理研究员 陈心想;维护好创新的“神经网络硬件”[N];中国教师报;2014年
2 卢业忠;脑控电脑 惊世骇俗[N];计算机世界;2001年
3 葛一鸣 路边文;人工神经网络将大显身手[N];中国纺织报;2003年
4 中国科技大学计算机系 邢方亮;神经网络挑战人类大脑[N];计算机世界;2003年
5 记者 孙刚;“神经网络”:打开复杂工艺“黑箱”[N];解放日报;2007年
6 本报记者 刘霞;美用DNA制造出首个人造神经网络[N];科技日报;2011年
7 健康时报特约记者 张献怀;干细胞移植:修复受损的神经网络[N];健康时报;2006年
8 刘力;我半导体神经网络技术及应用研究达国际先进水平[N];中国电子报;2001年
9 ;神经网络和模糊逻辑[N];世界金属导报;2002年
10 邹丽梅 陈耀群;江苏科大神经网络应用研究通过鉴定[N];中国船舶报;2006年
相关博士学位论文 前10条
1 杨旭华;神经网络及其在控制中的应用研究[D];浙江大学;2004年
2 李素芳;基于神经网络的无线通信算法研究[D];山东大学;2015年
3 石艳超;忆阻神经网络的混沌性及几类时滞神经网络的同步研究[D];电子科技大学;2014年
4 王新迎;基于随机映射神经网络的多元时间序列预测方法研究[D];大连理工大学;2015年
5 付爱民;极速学习机的训练残差、稳定性及泛化能力研究[D];中国农业大学;2015年
6 李辉;基于粒计算的神经网络及集成方法研究[D];中国矿业大学;2015年
7 王卫苹;复杂网络几类同步控制策略研究及稳定性分析[D];北京邮电大学;2015年
8 张海军;基于云计算的神经网络并行实现及其学习方法研究[D];华南理工大学;2015年
9 李艳晴;风速时间序列预测算法研究[D];北京科技大学;2016年
10 曾U喺
本文编号:1762883
本文链接:https://www.wllwen.com/kejilunwen/chuanbolw/1762883.html