当前位置:主页 > 科技论文 > 船舶论文 >

导管调距桨敞水性能的数值计算与实验研究

发布时间:2018-05-18 18:45

  本文选题:CFD数值计算 + 导管调距桨 ; 参考:《大连理工大学》2015年硕士论文


【摘要】:导管调距桨作为特种推进器,符合减少能耗,延长一次航行时间的要求,适用于作业时间长,作业工况复杂的渔船、拖船等。其中导管在对其水动力性能方面有着重要的影响作用。具有不同剖面参数的导管、以及导管与螺旋桨之间的安装间隙匹配都对导管调距桨的敞水性能有影响。本文首先对导管参数对导管螺旋桨水动力性能的影响进行了研究,选取19A导管与Ka桨组合的导管螺旋桨,通过UG建模,ICEM划分网格,STAR-CCM+对其进行数值计算,通过采用不同数量的网格验证了网格的无关性,并与实验结果进行比较。在精度满足要求的基础上,确定所采用的湍流模型以及边界条件等参数。在此基础上,通过改变导管参数与间隙匹配,具体包括导管长度、导管前缘厚度、导管与螺旋桨之间的间隙以及上下间隙的分布。通过计算分析,发现对于确定的导管剖面模型,减小尾部的长度以及改变前缘的厚度都会对导管桨的水动力性能产生影响,其中对尾部长度进行的改进产生的效果要更好。另外导管与螺旋桨之间间隙的变化也存在临界值,在大于临界值以及小于临界值的情况下,导管螺旋桨的水动力性能随间隙的变化规律有所区别。导管与螺旋桨上下间隙分布对导管桨的水动力性能影响不大,但是对长期工作带来的损伤会产生影响。通过这些结论,可以对导管的设计或调整改进提供参考。接着本文对某设计的大侧斜导管调距桨进行了数值计算。计算在不同螺距比下的敞水性能曲线,并且对导管调距桨敞水性能实验进行介绍,将实验结果与计算结果进行对比,结果显示误差在工程允许范围内并分析误差原因。在此基础上,通过改变模型边界层网格布置,分析了边界层网格对数值计算的影响,得到了好的计算结果所需要的边界层网格布置要求。接着本文分析了导管调距桨特有的螺距比带来的影响,不同的工况都存在最佳螺距比。最后通过改变导管与侧斜桨之间的间隙,进行计算,得到了上文得到的间隙规律对不同叶型的螺旋桨也是适用的。
[Abstract]:As a special propeller, the ducted propeller meets the requirements of reducing energy consumption and prolonging the time of one voyage. It is suitable for fishing boats and tugboats with long working time and complicated working conditions. The conduit plays an important role in the hydrodynamic performance. The ducts with different profile parameters and the matching of the installation gap between the ducts and the propeller have an effect on the open water performance of the ducted pitch regulating propeller. In this paper, the influence of duct parameters on the hydrodynamic performance of ducted propeller is studied. The ducted propeller with 19A duct and Ka propeller is selected, and its numerical calculation is carried out through UG modeling ICEM mesh division and STAR-CCM. The irrelevance of the mesh is verified by using different numbers of meshes and compared with the experimental results. On the basis of satisfying the requirement of accuracy, the turbulence model and boundary conditions are determined. On this basis, by changing the matching between the duct parameters and the gap, including the length of the catheter, the thickness of the leading edge of the duct, the gap between the duct and the propeller, and the distribution of the upper and lower clearance. Through the calculation and analysis, it is found that reducing the tail length and changing the thickness of the leading edge will affect the hydrodynamic performance of the ducted propeller, and the improvement of the tail length is better. In addition, there is a critical value of the gap between the duct and the propeller. When the critical value is greater than the critical value and less than the critical value, the hydrodynamic performance of the ducted propeller varies with the clearance. The distribution of the upper and lower clearance between ducts and propellers has little effect on the hydrodynamic performance of ducted propellers, but it will have an effect on the damage caused by long-term work. Through these conclusions, we can provide reference for the design and adjustment of catheters. Then, the numerical calculation of a large-side inclined duct pitch regulating propeller is carried out in this paper. The open water performance curves with different pitch ratios are calculated and the experimental results of open water performance of ducted pitch regulating propeller are introduced. The experimental results are compared with the calculated results. The results show that the error is within the allowable range of engineering and the causes of the errors are analyzed. On this basis, by changing the grid layout of the boundary layer, the influence of the boundary layer grid on the numerical calculation is analyzed, and the requirements of the boundary layer grid arrangement for a good calculation result are obtained. Then this paper analyzes the influence of the pitch ratio of the ducted adjustable pitch propeller, and the optimal pitch ratio exists in different working conditions. Finally, by changing the gap between the duct and the propeller, it is obtained that the gap law obtained above is also applicable to the propeller with different blade types.
【学位授予单位】:大连理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U664.33

【参考文献】

相关期刊论文 前4条

1 王国强,张建华;导管螺旋桨的升力面/面元偶合设计方法[J];船舶力学;2003年04期

2 孙明,林焰,纪卓尚;导管螺旋桨软件设计方法[J];船舶;2000年06期

3 司朝善;姚惠之;张楠;;艇体/导管螺旋桨干扰特性尺度效应数值模拟研究[J];船舶力学;2014年11期

4 黄建伟,张克危;导管桨的流动分析与性能预测[J];舰船科学技术;2004年S1期



本文编号:1906771

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/chuanbolw/1906771.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户cac05***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com