船舶余热在北极通航船舶关键舱室温控中的模拟研究
本文选题:北极通航 + 余热利用 ; 参考:《大连海事大学》2016年硕士论文
【摘要】:进入21世纪以来,全球气候变暖,北冰洋海冰迅速消融,同时一条横跨亚欧大陆全新的海上生命线随之应运而生。北极东北航线的开通为处在低迷期的航运业注入了新的活力,其中所蕴藏着的巨大经济潜力已然成为全世界关注的焦点之一。北极通航同时也面临着传统航线从未遇到过的挑战。其中,通航船舶的锚机、绞缆机、液压舵机等部分关键甲板机械的液压油受制于极地的低温,时常会出现由于流动性变差而导致启动、运行障碍等问题,影响了船舶的日常营运、作业,以及船员的生活;另外,船舶的高温淡水余热中很大一部分都作为废热而未被利用,造成了不必要的能源污染和浪费。因此,将船舶高温淡水的废热和蒸汽的余热,应用于北极通航船舶甲板机械液压油控温的研究,是当前一个重要而具有现实意义的课题。文章首先介绍了船舶主柴油机冷却水系统的发展历程和甲板机械液压系统的传动机理,论述处在低温环境中液压油凝点、粘度等因素变化给甲板机械带来的影响,并基于此提出设计一套利用船舶高温淡水及蒸汽余热加温的系统,大致方案为:在通航船舶舵机房及左右艉尖舱分别加装板式热交换器,利用缸套水从主柴油机带出的部分废热,通过自然对流的散热形式,间接实现对液压油柜的加热和控温;同时,在船舶高温淡水系统中加装一个拥有更好换热效率的波节管式热交换器,利用蒸汽余热实现对高温淡水进行加热,保证输送的热介质具有恒定的温度值。然后,文章利用传热学、流体力学中相关公式,建立理论计算模型来验证控温方案在热量传递方面的可行性,核算高温淡水传输管系和待加热舱室壁面保温材料的厚度,并进行相应热交换器的选型计算和公式推导。最后,文章通过采集实船数据对上述计算过程进行案例分析。结果表明,上述设计方案从理论上来说是可行的。
[Abstract]:Since the beginning of the 21st century, the global climate has become warmer, the Arctic sea ice has melted rapidly, and a new sea lifeline across the Eurasian continent has emerged as the times require. The opening of the Arctic northeast route has injected new vitality into the shipping industry in the downturn, in which the huge economic potential has become one of the focuses of the world. Arctic navigation also faces challenges that have never been encountered on traditional routes. Among them, the hydraulic oil of some key deck machinery such as anchor, winch and hydraulic steering gear of navigable ships is subject to the low temperature of the polar region, and often causes problems such as starting up and running obstacles due to poor mobility. It affects the daily operation, operation and the life of the crew. In addition, a large part of the ship's high temperature fresh water waste heat is not used as waste heat, resulting in unnecessary energy pollution and waste. Therefore, it is an important and practical subject to apply the waste heat of high temperature fresh water and the residual heat of steam to the study of the temperature control of mechanical hydraulic oil on the deck of Arctic navigable ship. This paper first introduces the development course of cooling water system of marine main diesel engine and the transmission mechanism of hydraulic system of deck machinery, and discusses the influence of the change of hydraulic oil freezing point and viscosity on deck machinery in low temperature environment. Based on this, a system is designed to use high temperature fresh water and steam heat to heat the ship. The scheme is as follows: the plate heat exchanger is installed in the ship steering gear room and the left and right stern peak cabin, respectively. Using part of waste heat brought out of main diesel engine by cylinder liner water, the heating and temperature control of hydraulic oil tank can be indirectly realized through natural convection heat dissipation form; at the same time, A corrugated tube heat exchanger with better heat transfer efficiency is added to the ship's high temperature fresh water system, and the heat transfer medium is guaranteed to have a constant temperature value by using the residual heat of steam to heat the high temperature fresh water. Then, by using the relevant formulas in heat transfer and hydrodynamics, the paper establishes a theoretical calculation model to verify the feasibility of the temperature control scheme in terms of heat transfer, and calculates the thickness of the heat preservation material on the wall of the high-temperature fresh water transfer pipe system and the room to be heated. The selection calculation and formula derivation of the heat exchanger are carried out. Finally, the paper carries on the case analysis to the above calculation process by collecting the real ship data. The results show that the above design scheme is feasible in theory.
【学位授予单位】:大连海事大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:U664
【相似文献】
相关期刊论文 前10条
1 屠宏伟,蔡云高,施建荣;“电-气”式主柴油机遥控系统中纯时延问题[J];造船技术;2000年06期
2 肖健梅 ,王锡淮 ,鲍敏中;神经网络在船舶主柴油机建模中的应用[J];船舶工程;2001年06期
3 胡启祥;船舶主柴油机凸轮轴断裂的分析与处理[J];天津航海;2004年04期
4 李舜杰;刘东风;马天帅;;舰船主柴油机缸内过程监测与诊断技术研究[J];柴油机;2011年03期
5 郭宏强;刘四方;陈超;;船舶主柴油机在线故障诊断系统研究[J];微计算机信息;2012年06期
6 刘开祥;;船舶低速大功率主柴油机遥控装置研制成功[J];交通部上海船舶运输科学研究所学报;1982年01期
7 吴泽亮;船舶主柴油机主动防振支承装置[J];船舶;1991年04期
8 ;船舶主柴油机自动控制和调距桨推进调查结果[J];船舶;1994年03期
9 王康恒,梁桢忠;B&W8L55GFCAP200型主柴油机的倒车失灵[J];青岛远洋船员学院学报;1996年02期
10 屠宏伟,蔡云高,施建荣;气动传输纯时延对主柴油机电—气遥控方式的影响[J];中国修船;1999年05期
相关会议论文 前4条
1 温宇钦;彭水生;吴恒;张惠泽;;船舶主柴油机滑油系统建模与仿真[A];中国航海学会船舶机电专业委员会2000年度学术报告会论文集[C];2000年
2 虞金霞;胡以怀;胡先富;;大型船舶主柴油机仿真系统的动态实现[A];2000年上海市系统仿真学会学术年会论文专辑[C];2000年
3 褚建新;顾伟;郑士君;;船舶主柴油机电子调速器转速调节原理仿真[A];上海海事大学与波兰格丁尼亚海事大学校际合作20周年科技论文集[C];2004年
4 尹自斌;李品芳;;船舶主柴油机NO_x排放实船测试方案[A];2010年船舶防污染学术年会论文集[C];2010年
相关硕士学位论文 前3条
1 谢天;船舶余热在北极通航船舶关键舱室温控中的模拟研究[D];大连海事大学;2016年
2 徐胜龙;“育鲲”轮主柴油机虚拟现实技术研究[D];大连海事大学;2010年
3 李国伍;船舶四冲程主柴油机增压系统运行规律的研究[D];集美大学;2007年
,本文编号:1990969
本文链接:https://www.wllwen.com/kejilunwen/chuanbolw/1990969.html