半潜式平台天车主动升沉补偿系统研究
本文选题:半潜式平台 + 被动补偿 ; 参考:《中国石油大学(华东)》2014年硕士论文
【摘要】:海洋钻井时,半潜式平台在波浪的作用下将产生周期性的升沉运动,引起大钩上下往复运动,导致井底钻压波动,使钻头脱离井底或冲击岩层,影响钻进效率,造成操作安全隐患。天车型升沉补偿系统具有承受载荷大、补偿能力强、补偿效果好等优点,可以有效补偿平台升沉,满足海洋钻井需求。本文以海洋石油981为研究对象,对其进行频域响应和时域响应分析,得到了平台在作业允许海况下的瞬态响应,从而获得升沉补偿系统的最大升沉幅度和速度。根据钻井手册及相关钻井设计规范,采用复合钻杆柱设计方法对海洋钻井进行钻柱设计,得到了不同井深下钻柱的重量、钻柱等效刚度系数以及钻柱允许的最大升沉。半潜式平台动态响应分析和海洋钻井钻柱设计为后续升沉补偿系统设计提供了重要的依据。文中先进行天车被动补偿系统研究,设计被动升沉补偿系统主体结构,在结构设计的基础上,利用气液弹簧的原理进行被动补偿液压设计。经过理论推导,建立系统静态分析数学模型,通过模型得到了液压缸作用力与天车在滑轨中的关系曲线;采用分离法,对各个物体进行受力分析,分别列出动力学方程,经过换算和组装,建立天车运动方程。根据被动补偿液压设计和理论分析,对直立双缸和倾斜双缸分别建立液压仿真模型,并进行液压仿真,得出倾斜双缸补偿效果优于直立双缸。在倾斜液压仿真模型基础上,进行系统参数分析,得出储气罐体积、钻井井深、平台升沉幅度、平台升沉周期以及液压缸夹角对天车被动升沉补偿效果的影响规律。在被动升沉补偿结构设计的基础上,引入两直立主动补偿缸结构,共同构成了天车主动升沉补偿系统结构。依据系统结构进行液压系统设计,设计采用变量泵与节流阀共同控制的方法,节流阀控制变量泵出口压力,变量阀控制出口流量,两者相辅相成节能高效地完成补偿功能。对储气罐设计了压力调节系统,通过调节储气罐压力可以动态的改变液压缸对天车的作用力,进而动态调节系统补偿状态。在主动补偿结构设计和液压设计基础上,采用动力学方法,建立天车运动方程,为系统主动补偿提供理论依据。搭建主动补偿液压仿真模型,得到天车位移随时间变化曲线,并分析天车的补偿效果。鉴于仿真软件未能考虑液压滞后效应,文中人为加入滞后角度并进行仿真,得出了滞后角度与天车补偿效果的关系。在液压仿真模型基础上添加能耗计算模块,分析系统能耗,并对能耗进行参数影响分析,得出了各参数对能耗的影响规律,为系统节能提供重要依据。对天车主动补偿系统关键构件如主动补偿缸、被动补偿缸、储气罐,油管等进行详细设计,设计其尺寸和性能参数,并对其进行相应校核与优化,使其满足使用要求。
[Abstract]:In offshore drilling, the semi-submersible platform will produce periodic heave motion under the action of waves, which will cause the large hook to move up and down, which will lead to the bottom hole pressure fluctuation, which will make the drill bit break off the bottom hole or impact the rock formation, which will affect the drilling efficiency. Cause hidden trouble of operation safety. The heave compensation system has the advantages of large load, strong compensation ability and good compensation effect. It can effectively compensate the platform heave and meet the requirements of offshore drilling. In this paper, the frequency domain response and time domain response of the offshore oil 981 are analyzed, and the transient response of the platform under the operational conditions is obtained, thus the maximum heave amplitude and velocity of the heave compensation system are obtained. According to the drilling manual and relevant drilling design code, the design method of compound drill string is used to design the drill string in offshore drilling. The weight of drill string under different well depth, the equivalent stiffness coefficient of drill string and the maximum allowable heave of drill string are obtained. The dynamic response analysis of semi-submersible platform and the design of drilling string provide important basis for the subsequent design of heave compensation system. In this paper, the passive compensation system of crane is studied firstly, and the main structure of the passive heave compensation system is designed. On the basis of the structural design, the principle of gas-liquid spring is used to design the passive compensation hydraulic system. Through theoretical derivation, the mathematical model of system static analysis is established, and the relationship curve between the cylinder force and the crane in the slide rail is obtained by the model, and the force analysis of each object is carried out by using the separation method, and the dynamic equations are listed respectively. After conversion and assembly, the motion equation of crane is established. According to the hydraulic design and theoretical analysis of passive compensation, the hydraulic simulation models of vertical double cylinder and inclined double cylinder are established, and the hydraulic simulation results show that the compensation effect of inclined double cylinder is better than that of vertical double cylinder. Based on the inclined hydraulic simulation model, the system parameters are analyzed, and the effects of tank volume, drilling well depth, platform heave amplitude, platform heave cycle and hydraulic cylinder angle on the compensation effect of passive heave compensation are obtained. Based on the design of passive heave compensation structure, two vertical active compensation cylinder structures are introduced, which constitute the structure of crane active heave compensation system. The hydraulic system is designed according to the system structure. The variable pump and throttle valve are used to control the outlet pressure of the variable pump and the variable valve to control the outlet flow. The pressure regulating system is designed for the gas storage tank. By adjusting the pressure of the gas storage tank, the force of the hydraulic cylinder on the crane can be changed dynamically, and then the compensation state of the system can be dynamically adjusted. On the basis of active compensation structure design and hydraulic design, the dynamic method is used to establish the motion equation of the crane, which provides the theoretical basis for the active compensation of the system. The hydraulic simulation model of active compensation is built to get the curve of crane displacement with time, and the compensation effect of crane is analyzed. In view of the failure of the simulation software to consider the hydraulic lag effect, the relationship between the lag angle and the compensation effect of the crane is obtained by adding the lag angle to the simulation. Based on the hydraulic simulation model, the energy consumption calculation module is added to analyze the energy consumption of the system, and the influence of the parameters on the energy consumption is analyzed. The influence law of the parameters on the energy consumption is obtained, which provides an important basis for the energy saving of the system. The key components of the crane active compensation system, such as active compensation cylinder, passive compensation cylinder, gas storage tank and tubing, are designed in detail, their dimensions and performance parameters are designed, and the corresponding checking and optimization are carried out to make them meet the requirements of application.
【学位授予单位】:中国石油大学(华东)
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U674.381
【相似文献】
相关期刊论文 前10条
1 张超;王庆丰;王海波;;水下拖曳升沉补偿负载模拟加载系统的设计[J];机床与液压;2008年12期
2 王海波;王庆丰;;拖体被动升沉补偿系统非线性建模及仿真[J];浙江大学学报(工学版);2008年09期
3 朱晓环;孙洪峰;段梦兰;周帆;李振林;;一种复合型深水安装升沉补偿系统的设计[J];液压与气动;2012年02期
4 汤晓燕;刘少军;云忠;;基于虚拟样机技术的深海采矿主动式升沉补偿系统设计[J];北京工业大学学报;2008年05期
5 徐宝富;羊衍贵;谌志新;王云杰;;基盘升沉补偿系统的设计和分析[J];中国工程机械学报;2012年03期
6 肖体兵;吴百海;龙建军;;深海作业装置主动型升沉补偿系统控制器的研究[J];液压与气动;2008年04期
7 张彦廷;渠迎锋;刘振东;马江涛;;天车升沉补偿系统摇摆装置的设计[J];浙江大学学报(工学版);2012年12期
8 李明婕;段梦兰;叶茂;任晓瑶;秦文婷;吕博;;深水绞车半主动升沉补偿系统设计及仿真[J];液压与气动;2014年02期
9 吴百海,肖体兵,龙建军,毛宁;深海采矿装置的自动升沉补偿系统的模拟研究[J];机械工程学报;2003年07期
10 邓智勇;高剑;谢金辉;高磊;唐国元;黄道敏;;基于节流方法的被动式吊机升沉补偿系统设计[J];船海工程;2014年04期
相关会议论文 前5条
1 肖体兵;吴百海;;轻载主动型升沉补偿模拟试验系统的仿真和实验研究[A];中国海洋学会2005年学术年会论文汇编[C];2005年
2 任克忍;沈大春;王定亚;肖锐;李鹏;南树歧;;海洋钻井升沉补偿系统技术分析[A];2009年石油装备学术研讨会论文专辑[C];2009年
3 姜浩;刘衍聪;张彦廷;刘振东;;钻柱升沉补偿试验台控制系统设计[A];2011年石油装备学术研讨会论文专辑[C];2011年
4 肖体兵;;深海采矿扬矿管重载半主动型升沉补偿系统控制器的研究[A];第二十七届中国控制会议论文集[C];2008年
5 吴百海;邹大鹏;冶占武;陈飞燕;肖奇军;;深海采矿长行程升沉补偿油缸的同步检测与控制[A];机床与液压学术研讨会论文集[C];2004年
相关重要报纸文章 前1条
1 澳思;OSBV公司将为Edda住宿船建过道[N];中国船舶报;2010年
相关博士学位论文 前5条
1 肖体兵;深海采矿装置智能升沉补偿系统的研究[D];广东工业大学;2004年
2 曾智刚;波浪运动升沉补偿液压平台关键问题试验研究[D];华南理工大学;2010年
3 王海波;水下拖曳升沉补偿液压系统及其控制研究[D];浙江大学;2009年
4 姜浩;海洋浮式钻井平台钻柱升沉补偿系统研究[D];中国石油大学(华东);2013年
5 李流军;动力吸振式深海采矿主动升沉补偿系统设计及控制研究[D];中南大学;2012年
相关硕士学位论文 前10条
1 黄志鹏;大吨位沉船打捞链式同步提升平台设计[D];大连海事大学;2015年
2 贺子奇;海上作业绞车式主动升沉补偿系统设计与仿真[D];大连理工大学;2015年
3 董航;船用起重机油缸式主动升沉补偿系统研究[D];大连理工大学;2015年
4 韩雪;沉船提升被动型液压升沉补偿系统设计与仿真研究[D];大连海事大学;2015年
5 贾俊梁;3000米深水勘察船钻机系统研究[D];西安石油大学;2015年
6 陈武雄;复合缸游车大钩升沉补偿试验台电控系统的设计及实验研究[D];中国石油大学(华东);2014年
7 王龙;基于恒张力原理的绞车升沉补偿系统研究[D];中国地质大学;2015年
8 李俊;半潜式平台天车主动升沉补偿系统研究[D];中国石油大学(华东);2014年
9 白鹿;钻柱液压升沉补偿系统设计研究[D];中国石油大学;2009年
10 武光斌;复合缸式钻井升沉补偿系统的设计研究[D];中国石油大学;2010年
,本文编号:2073660
本文链接:https://www.wllwen.com/kejilunwen/chuanbolw/2073660.html