当前位置:主页 > 科技论文 > 电气论文 >

考虑负荷和分布式电源不确定性的配电网重构方法研究

发布时间:2017-12-28 03:27

  本文关键词:考虑负荷和分布式电源不确定性的配电网重构方法研究 出处:《湖南大学》2016年硕士论文 论文类型:学位论文


  更多相关文章: 分布式电源 不确定性 配电网重构 自适应粒子群算法 场景法


【摘要】:分布式发电作为新能源发电并网的一种形式,以其环保、灵活高效等优点得到了广泛应用,给电网带来诸多便利,而同时不可避免地给电网带来了复杂性和不确定性。分布式电源的接入使原有的配电网潮流分布、网损以及电压稳定发生变化。因此,为保证电网安全、稳定运行,配电网中的不确定性因素将不得不被纳入考虑范围。而配电网重构是保证电网安全、稳定运行的重要技术手段。基于此,本文在考虑负荷和分布式电源的不确定性情况下,对智能配电网重构方法进行研究。在对传统配电网前推回代潮流计算的基础上,采用节点分层的策略,将分布式电源分成PQ、PI、PV、PQ(V)四种节点类型进行处理,建立了相应的配电网潮流计算模型,给出了含DG的节点分层前推回代潮流计算方法,并对含各种类型DG的配电网潮流进行仿真分析。提出了一种基于自适应粒子群算法的智能配电网重构方法。采用非线性惯性权重,确保算法能够有效地处理配电网重构方面的非线性优化问题。建立了以网损最小为目标的配电网重构模型,采用整数编码策略,并提出开关环路矩阵和送端矩阵来判断不可行解,缩减不可行解的比例,以提升搜索效率;同时根据位置特点对位置更新公式进行了改进。通过仿真验证所提智能配电网重构方法的有效性。提出基于场景法的考虑不确定性因素的智能配电网重构方法。采用轮盘赌机制和Weibul概率分布函数,分别对负荷和风能变化进行预测并生成随机场景,将不确定性问题转化为各自确定的场景内的问题。对每个确定的场景,利用改进的自适应粒子群优化算法实现网络重构,并通过期望值的方法实现场景聚合,来确定最终的重构方案。通过仿真验证了场景法处理考虑不确定性的配电网重构的可行性,并分析不确定性对配电网重构的影响。
[Abstract]:Distributed generation, as a form of grid connected new energy generation, has been widely used for its advantages of environmental protection, flexibility and efficiency, and brings convenience to the power grid. At the same time, it inevitably brings complexity and uncertainty to the power grid. The distribution of power flow, network loss and voltage stability of the distribution network changes with the access of distributed power supply. Therefore, in order to ensure the safe and stable operation of the power grid, the uncertain factors in the distribution network will have to be taken into consideration. The distribution network reconfiguration is an important technical means to ensure the safe and stable operation of the power grid. Based on this, this paper studies the method of intelligent distribution network reconfiguration considering the uncertainty of load and distributed power supply. Based on the flow calculation of the traditional distribution network power generation, using the node hierarchical strategy, distributed power is divided into PQ, PI, PV, PQ (V) four kinds of node types, the corresponding power flow calculation model is established, the node layer containing DG and backward power flow calculation method is given the trend and distribution network with various types of DG simulation analysis. An intelligent distribution network reconfiguration method based on Adaptive Particle Swarm Optimization (PSO) is proposed. The nonlinear inertia weight is adopted to ensure that the algorithm can effectively deal with the nonlinear optimization problems of distribution network reconfiguration. To establish the model of distribution network reconfiguration with the minimum network loss as the target, using integer encoding strategy, and puts forward the switch matrix and the loop matrix to determine the sending end of infeasible solution, reducing the proportion of feasible solutions to improve the search efficiency; at the same time according to the characteristics of the improved location location update formula for. The effectiveness of the proposed method of intelligent distribution network reconfiguration is verified by simulation. An intelligent distribution network reconfiguration method based on scene method is proposed, which considers uncertain factors. Based on roulette mechanism and Weibul probability distribution function, load and wind energy changes are forecasted and random scenes are generated, and the uncertain problems are transformed into the problems in each identified scenario. For each deterministic scenario, the improved adaptive particle swarm optimization algorithm is used to reconstruct the network, and the scene aggregation is achieved through the expected value method to determine the final reconstruction plan. The feasibility of the scene method to deal with the uncertainty of distribution network reconfiguration is verified by simulation, and the influence of uncertainty on the distribution network reconfiguration is analyzed.
【学位授予单位】:湖南大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TM711


本文编号:1344398

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1344398.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ca838***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com