二氧化锰超级电容器电极材料制备及电化学性能研究
发布时间:2018-01-10 00:00
本文关键词:二氧化锰超级电容器电极材料制备及电化学性能研究 出处:《北京交通大学》2017年硕士论文 论文类型:学位论文
更多相关文章: 超级电容器 材料形貌 MnO_2 石墨烯 PVDF 氮掺杂
【摘要】:作为一种新型储能体系,超级电容器的快速发展有望克服锂离子电池固有局限性。以二氧化锰(MnO_2)为代表的超级电容器电极材料,由于低导电性和低结晶度等缺点,限制了它们在高能量密度超级电容器领域中的应用。现今主要通过对电极结构的可控制备与制备复合材料提升MnO_2电极材料电学性能。因此,本文选择MnO_2作为研究对象,通过不同方式进一步提升电学性能并探索相关的储能机制。本论文的研究内容如下:(1)探究制备条件对电化学性能的影响,通过控制水热反应条件可控制备二氧化锰电极材料。通过不同表征手段结合电化学性能测试,分析二氧化锰相变过程与反应条件之间的内在联系,探究最佳制备方案。通过实验发现二氧化锰在反应过程中存在一个α→δ相变的过程。在140 ℃下水热6小时制备出花状δ-MnO_2纳米球,电流密度为0.5Ag~(-1)时比电容可达192.7Fg~(-1),并且在1Ag~(-1)循环1000次后比电容保持率为94.6%,表明它是一种具有良好前景的超级电容器电极材料。(2)设计和制造了石墨烯/聚偏二氟乙烯(GO/PVDF)复合粘结剂,提升二氧化锰超级电容器电学性能。相比于物理混合粘结剂,采用石墨烯复合粘结剂制备的二氧化锰电极比电容在0.5 Ag~(-1)电流密度下可达220.1 Fg~(-1)。此外,该电极显示优异的循环稳定性,1 A g~(-1)电流密度下循环1000次后比电容为198.8 Fg~(-1),电容保持率为90.1%。(3)通过水热法制备花状氮掺杂石墨烯/二氧化锰纳米复合材料(NG-MnO_2)。所制备的氮掺杂复合材料孔径约为0.765cm3g~(-1),比表面积为201.8m2g~(-1)。该材料具有优异的倍率性能,10Ag~(-1)电流密度下比电容可达189.1 Fg~(-1)。1000次循环后,比电容保持率为98.3%以上,与活性炭组装成不对称电容器后可点亮红色发光二极管(LED),具有良好的电学性能。
[Abstract]:As a new energy storage system, the rapid development of supercapacitors is expected to overcome the inherent limitations of lithium ion batteries. Because of low conductivity and low crystallinity and other shortcomings. It limits their application in the field of high energy density supercapacitors. Nowadays, the electrical properties of MnO_2 electrode materials are improved by the controllable preparation and fabrication of composite materials. This paper chooses MnO_2 as the research object. Through different ways to further improve the electrical properties and explore the related mechanisms of energy storage. The research content of this paper is as follows: 1) to explore the preparation conditions on the electrochemical performance. Manganese dioxide electrode materials can be controlled by controlling hydrothermal reaction conditions, and the intrinsic relationship between phase transition process and reaction conditions of manganese dioxide is analyzed by means of different characterization means and electrochemical performance test. To explore the best preparation method. It is found that there is a 伪 in the reaction process of manganese dioxide by experiment. 鈫扵he process of 未 phase transition. The flower-like 未 -MnO _ 2 nanospheres were prepared at 140 鈩,
本文编号:1403017
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1403017.html