离子取代对M型锶铁氧体结构及性能的影响
发布时间:2018-01-19 06:04
本文关键词: M型锶永磁铁氧体 镧锌取代 预烧温度 镧钴取代 磁性 出处:《安徽大学》2017年硕士论文 论文类型:学位论文
【摘要】:随着经济和科技的飞速发展,全球对铁氧体的需求量越来越大,作为铁氧体生产大国,生产高性能的铁氧体却是一个一直困扰着国人的难题,生产高性能铁氧体的技术一直被日本TDK公司所掌握。国内学者为了不落于人后,近几十年一直对铁氧体领域保持着很高的研究热情。在所有铁氧体材料中,由于M型铁氧体具有高矫顽力、高磁能积、高磁晶各向异性、性能稳定、价格便宜等优点,很多产业的发展都对M型铁氧体有着极高的依赖性。但是在实际应用中,人们发现M型铁氧体的实际性能和理论值相比还有一定差距。在改善工艺设备等方面的同时,为了能够更好的提高M型铁氧体的磁性能,离子取代逐渐成为人们改善铁氧体性能的主要手段。本论文的实验中采用了传统陶瓷法制备了镧锌取代的锶永磁铁氧体Sr1-xLaxFe12-yZnyO19,在配方中令x/y的值为4/3。首先研究了 La-Zn取代量对样品Sr1-xLaxFe12-yZnyO19结构及磁性能的影响。接着研究Fe3+离子含量对样品Sr0.84La0.16FexZn0.12O19结构及磁性能的影响。实验结果显示,Sr0.84La0.16Fe11.65Zn0.12O19具有较好的磁性能。改变预烧温度探索温度对样品性能的影响。为了一步提升M型锶铁氧体的磁性能,在二次球磨时加入了添加剂SiO2、Al2O3,通过正交实验改变添加剂含量,探索出最佳的添加剂含量。研究了非磁性离子Zn2+和La3+的联合取代后,接着探索磁性离子Co2+和La3+的联合取代在缺铁配方下对M型锶铁氧体结构及性能的影响。结果显示样品Sr0.82 La0.18Fe11.70Co0.18O19具有较好的磁性能,在此基础上改变预烧温度,探究温度对样品性能的影响。利用X射线衍射仪、扫描电子显微镜(HITACHI S-4800型)、振动样品磁强计以及B-H永磁测量分析仪(NIM-2000HF),对每组样品的结构、微观形貌及磁性能进行了测量和研究。实验结果,总结为以下六点:1、镧锌取代M型锶铁氧体实验中,随着取代量的增加,晶格常数a值波动不大,晶格常数c的值随着取代量的增加单调减小。在x=0.16,y=0.12时,剩余磁化强度Br取得最大值395.8 mT,内禀矫顽力Hcj取得值为231.3 kA/m,磁感应矫顽力Hcb的值为224.7 kA/m,最大磁能积(BH)max获得最大值29.44 kJ/m3。镧锌取代M型锶铁氧体的最佳配方为Sr0.84La0.16Fe11.88Zn0.12O19。2、在探究铁离子含量变化对M型铁氧体性能影响的实验中,随着Fe3+离子含量的改变,晶格常数a、c的值都几乎没有变化。当铁的含量x=11.95时,出现杂峰。铁的含量 x=11.65 时,M型锶铁氧体 Sr0.84La0.16FexZn0.12O19(11.35≤x≤11.95)获得较好的磁性能;剩余磁化强度Br取得最大值414.2 mT,内禀矫顽力Hcj取得最大值251.8 kA/m,磁感应矫顽力Hcb最大值236.2 kA/m,最大磁能积(BH)max获得最大值31.75 kJ/m3。M型锶铁氧体的最佳配方是Sr0.84La0.16Fe11.65Zn0.12O19。3、以 Sr0.84La0.16Fe11.65Zn0.12O19为配方,制备样品。分别设置 1190、1200、1210、1220、1230℃为预烧温度,保温3h。随着预烧温度的升高,样品晶格常数a、c的值都缓慢增加。当温度为1230℃时出现杂峰。当预烧温度是1210℃时,样品性能最好,剩余磁化强度Br取得最大值420.6 mT,内禀矫顽力Hcj取得最大值262.1 kA/m,磁感应矫顽力Hcb取得最大值241.7 kA/m,最大磁能积(BH)max获得最大值32.31 kJ/m3。4、以Sr0.84La0.16Fe11.65Zn0.12O19为配方,用传统陶瓷法制备样品。二次球磨时候加入添加剂SiO2、Al2O3。通过正交实验选出最佳含量的添加剂是0.5wt%SiO2、0.5wt%Al2O3。这两种添加剂可以降低样品的剩余磁化强度Br,提高内禀矫顽力Hcj。5、镧钴取代M型锶铁氧体实验中,随着取代量的增加,晶格常数a值波动不大,晶格常数c的值随着取代量的增加单调减小;剩余磁化强度Br、内禀矫顽力Hcj、磁感应矫顽力Hcb、最大磁能积(BH)max都呈现出先增大后减小的趋势。在x=0.18,样品综合性能最好,即镧钴取代M型锶铁氧体的最佳配方为Sr0.82La0.18Fe11.70Co0.18O19。6、以 Sr0.82La0.18Fe11.70Co0.18O19为配方,制备样品。分别设置 1190、1205、1220、1235、1250、1265℃为预烧温度,保温3h。随着预烧温度的升高,样品晶格常数a、c的值都缓慢增加,剩余磁化强度Br、禀矫顽力Hcj、磁感应矫顽力Hcb、最大磁能积(BH)max都呈现出先增大后减小的趋势。当温度为119℃和1265℃时出现杂峰。1235℃时,样品性综合性能较好。
[Abstract]:With the rapid development of economy and technology, the global demand for ferrite increases, as ferrite producing countries, production of high performance ferrite is a difficult country, the production of high performance ferrite technology has been TDK Corporation in Japan. In order to grasp the domestic scholars not to fall behind, in recent decades has been on the ferrite field to keep the study enthusiasm is very high. In all of the ferrite material, because M ferrite with high coercivity, high magnetic energy product, high magnetocrystalline anisotropy, stable performance, low price, the development of many industries have a high dependence on M ferrite. But in practice, people found that there is still a certain gap M ferrite of the actual performance and the theoretical value. In the improvement of process equipment etc. at the same time, in order to improve the magnetic properties of M ferrite can better, ion Instead of gradually become the main means to improve the performance of ferrite people. This paper adopts the method of traditional ceramic zinc substituted lanthanum strontium ferrite Sr1-xLaxFe12-yZnyO19 was prepared, in the formula of x/y value for the 4/3. first studied the effect of La-Zn content on the structure and magnetic properties of the samples. Then the study of Fe3+ Sr1-xLaxFe12-yZnyO19 effect of ion content on the structure and magnetic properties of the samples of Sr0.84La0.16FexZn0.12O19. Experimental results show that Sr0.84La0.16Fe11.65Zn0.12O19 has better magnetic properties. The change of pre sintering temperature on the effect of temperature on sample performance. In order to further enhance the M type strontium ferrite magnetic properties in two milling adding additives SiO2, Al2O3, orthogonal the change of additive content, explore the best additive content was studied. Combined with non magnetic ions Zn2+ and La3+ replaced, then explore the magnetic ion Joint substitution effects on the structure and properties of M type strontium ferrite in iron deficiency formula. The results showed that Co2+ and La3+ sample Sr0.82 La0.18Fe11.70Co0.18O19 has better magnetic properties, based on the change of pre sintering temperature, explore the impact of temperature on the performance of the samples. By using X ray diffraction, scanning electron microscopy (HITACHI S-4800) B-H, vibrating sample magnetometer and magnetic analyzer (NIM-2000HF), the structure of each sample, the microstructure and magnetic properties were measured and analyzed. Experimental results are summarized in the following six points: 1, zinc lanthanum substituted M type strontium ferrite in the experiment, with the increase of the amount of substitution, the lattice constant a value small fluctuations, the lattice constant C value with the increase of the amount of substitution decreases monotonically. In x=0.16, y=0.12, residual magnetization Br has a maximum value of 395.8 mT, intrinsic coercivity Hcj value is 231.3 kA/m, the magnetic coercivity of Hcb The value is 224.7 kA/m, the maximum energy product (BH) max to get the best formula of the maximum value of 29.44 kJ/m3. substituted M type zinc lanthanum strontium ferrite is Sr0.84La0.16Fe11.88Zn0.12O19.2, in effect explore the changes of iron ion content on the properties of M ferrite in the experiment, with the content of Fe3+ ion, the lattice constant a, C value almost no change. When the content of x=11.95 iron, mixed peak. X=11.65 content of iron, M type strontium ferrite Sr0.84La0.16FexZn0.12O19 (x = 11.35 ~ 11.95) to obtain better magnetic properties; residual magnetization of Br has a maximum value of 414.2 mT, intrinsic coercivity Hcj has a maximum value of 251.8 kA/m, magnetic induction coercivity Hcb maximum 236.2 kA/m, the maximum energy product (BH) max maximum optimum formula of 31.75 kJ/m3.M type strontium ferrite is Sr0.84La0.16Fe11.65Zn0.12O19.3, based on Sr0.84La0.16Fe11.65Zn0.12O19 formula, the sample preparation were set up. 11901200121012201230 C for pre sintering temperature, thermal insulation 3h. with increasing calcination temperature, the lattice constant a, the value of C increased slowly. When the temperature is 1230 degrees centigrade mixed peak. When the calcination temperature is 1210 degrees, the best performance of the samples, the residual magnetization of Br has a maximum value of 420.6 mT, the intrinsic coercive the coercive force Hcj has a maximum value of 262.1 kA/m, the magnetic coercivity of Hcb has a maximum value of 241.7 kA/m, the maximum energy product (BH) max maximum value of 32.31 kJ/m3.4, with Sr0.84La0.16Fe11.65Zn0.12O19 formula, samples prepared by the conventional ceramic method. Two milling when adding additives SiO2, Al2O3. select the best additive content is by orthogonal experiment 0.5wt%SiO2,0.5wt%Al2O3. these two kinds of additives can reduce the residual magnetization of Br sample, the coercivity of Hcj.5 increase in lanthanum cobalt substituted M type strontium ferrite in the experiment, with the increase of the amount of substitution, the lattice constant a value Small fluctuations, the lattice constant C value with the increase of the amount of substitution decreases monotonously; residual magnetization Br, intrinsic coercivity Hcj, magnetic coercivity Hcb, the maximum energy product (BH) max exhibit increased first and then decreased. In x=0.18, the comprehensive performance of the best samples, namely lanthanum cobalt best the formula of M type strontium ferrite substituted for Sr0.82La0.18Fe11.70Co0.18O19.6, based on Sr0.82La0.18Fe11.70Co0.18O19 formula, preparation of samples. 119012051220123512501265 were set as C presintering temperature, thermal insulation 3h. with increasing calcination temperature, the lattice constant a, the value of C increased slowly, Br residual magnetization, coercivity Hcj, magnetic induction the coercivity of Hcb, the maximum energy product (BH) max exhibit increased first and then decreased. When the temperature is 119 DEG and 1265 DEG C mixed peak at.1235 C, the comprehensive performance of samples better.
【学位授予单位】:安徽大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM277
【参考文献】
相关期刊论文 前8条
1 刘先松;王超;冯双久;阮征;;磁铅石结构新钙系铁氧体的制备与磁性能[J];稀有金属材料与工程;2014年02期
2 王琦,官建国,刘飚,张清杰;共沉淀法制备Co_2-Z型铁氧体形成动力学过程研究[J];硅酸盐通报;2004年03期
3 李东风,孟哲,贾振斌,魏雨;化学共沉淀法制备纳米级软磁铁氧体研究进展[J];应用科技;2003年04期
4 刘先松,都有为;M型永磁铁氧体的现状与进展[J];磁性材料及器件;2001年01期
5 张药西;低温烧结铁氧体粉料的最新进展[J];电子元件与材料;2001年01期
6 汪礼敏;高能机械研磨制备铁氧体的研究[J];粉末冶金技术;1999年02期
7 张密林,景晓燕,,周铭;水热法合成Sr-La铁氧体超微粉末[J];稀土;1994年01期
8 廖乾初;扫描电镜科学技术和应用的进展[J];物理;1993年03期
本文编号:1442924
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1442924.html