当前位置:主页 > 科技论文 > 电气论文 >

基于V2B模式的分布式能源系统的协作运营决策研究

发布时间:2018-02-03 02:45

  本文关键词: 电动汽车到建筑 能源系统 协作决策 多目标优化 智能社区 出处:《东华大学》2017年硕士论文 论文类型:学位论文


【摘要】:随着智能电网的发展,通过实现电动汽车和电网之间的双向交流-也就是Vehicle-to-Grid(V2G)模式,可以显著提高电力系统的经济性能和环境可持续性。该模式中,当电动汽车不在运行且有剩余电量的时候,可以通过联接到电网将电能输给电网,反过来,当电动汽车的电池需要充电时,电流可以从电网中提取出来给到电池。因此,V2G模式可以利用电动汽车作为分布式能量存储单位来协调用户对电力的需求、优化资源配置和增强电网的调峰能力,从而提高能源的利用效率和保证电力供应的可靠性、灵活性和经济性。近来,由于电动汽车和智能建筑的广泛应用,电动汽车到建筑(Vehicle-to-Building,V2B)模式作为V2G模式的一种延伸引起了更大的关注。V2B模式,即利用电动汽车电池容量作为建筑电网的辅助分布式储能系统。跟V2G模式的原理一样,V2B模式的一个关键特征也是双向能源输送机制,该机制使得电动汽车既可以从建筑能源系统中吸收电能也可以向建筑能源系统反馈电能,从而提高整个能源系统的能源使用效率。在通信技术的辅助下,V2B模式下的能源输送可以控制在一个智能的方式下以提高电网稳定性同时降低建筑和电动汽车的用能成本。尽管基于V2B模式的分布式能源系统有如上的优势,但是很少有研究着眼于研究和开发最优化的运营策略来优化这个能源系统的运营成本并探讨一些关键因素对整个能源系统的成本节约的影响。针对这一研究的漏洞,本文提出了基于V2B模式的分布式能源系统的协作式决策模型。在这个分布式能源系统中,建筑和电动汽车充电站不仅都有自己的能源需求,还都有自己的供能系统和能源存储系统。针对该V2B分布式能源系统的决策目标,主要是要实现最小化运营成本,其中包括能源的使用成本和碳排放的成本。在本文中,我们构建了一个协作式决策模型,用来求解针对该分布式能源系统所建立的多目标优化问题,从而得到最终的Pareto最优解。为了验证协作式决策模型的有效性,我们分析了不同电价机制下,协作运营策略和非协作运营策略在运营成本上的表现。通过对不同运营策略的对比分析,我们得到了基于V2B模式的分布式能源系统的协作运营比非协作运营能够更显著的降低运营成本。而且无论是协作运营还是非协作运营,实时电价机制下运营成本都要低于固定电价机制下的运营成本。最后,针对V2B分布式能源系统在实时电价下的协作运营,我们分析了车主的充电行为、地理位置和建筑类型对该能源系统运营成本节约的影响。本文的研究结果对未来智能社区/城市设计提供了非常有价值的见解和依据。
[Abstract]:With the development of smart grid, the V2G mode is realized by two-way communication between electric vehicle and power grid, that is, Vehicle-to-GridCon V2G. It can significantly improve the economic performance and environmental sustainability of the power system. In this model, when the electric vehicle is not in operation and there is surplus power, it can be connected to the power grid to lose electricity to the power grid, in turn. When the battery of an electric vehicle needs to be recharged, the current can be extracted from the power grid to give it to the battery. Therefore, the V2G mode can use the electric vehicle as a distributed energy storage unit to coordinate the power demand of users. Optimization of resource allocation and enhancement of the peak shaving capacity of the power grid, thereby improving energy efficiency and ensuring reliability, flexibility and economy of power supply. Recently, due to the widespread use of electric vehicles and intelligent buildings. As an extension of V2G model, electric vehicle to building vehicle (V2B) model has attracted more attention. As the principle of V2G mode, a key feature of V2B mode is bidirectional energy transmission mechanism. This mechanism can not only absorb electric energy from the building energy system but also feedback the energy to the building energy system so as to improve the energy efficiency of the whole energy system. Energy transmission in V2B mode can be controlled in an intelligent way to improve power grid stability while reducing the energy cost of buildings and electric vehicles. Advantages. However, few studies have focused on optimizing the operating costs of the energy system by researching and developing optimal operational strategies and exploring the impact of some key factors on the cost savings of the energy system as a whole. The hole. This paper presents a collaborative decision model of distributed energy system based on V2B model. In this distributed energy system, both building and electric vehicle charging stations have their own energy requirements. Also have their own energy supply system and energy storage system. For the V2B distributed energy system decision-making goal is to achieve the goal of minimizing operating costs. In this paper, we construct a collaborative decision model to solve the multi-objective optimization problem for the distributed energy system. In order to verify the validity of the cooperative decision model, we analyze the different pricing mechanisms. The performance of cooperative operation strategy and non-cooperative operation strategy in operation cost. We get that the cooperative operation of the distributed energy system based on V2B model can significantly reduce the operating cost compared with the non-cooperative operation, and whether cooperative operation or non-cooperative operation. The operating cost under the real-time electricity price mechanism is lower than the operating cost under the fixed electricity price mechanism. Finally, in view of the cooperative operation of the V2B distributed energy system under the real-time electricity price, we analyze the charging behavior of the vehicle owner. The influence of geographical location and building type on the operation cost saving of the energy system. The results of this paper provide valuable insights and basis for the future intelligent community / city design.
【学位授予单位】:东华大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM61;TM732

【参考文献】

相关期刊论文 前10条

1 蒋润花;杨晓西;杨敏林;杨小平;;内燃机分布式冷热电联供技术应用及发展趋势[J];节能技术;2012年02期

2 闫晓娟;黎艳兵;;冷热电联供系统能耗与CO_2排放特性分析[J];建筑热能通风空调;2012年01期

3 谷雅秀;王生鹏;高振生;;冷热电三联产系统研究进展[J];热力发电;2010年12期

4 周新军;;交通运输业能耗现状及未来走势分析[J];中外能源;2010年07期

5 韩晓平;;分布式能源系统的称谓与定义[J];中国电力教育;2010年02期

6 李胜;吴静怡;王如竹;;冷热电联供系统的研究热点概述[J];制冷与空调;2008年06期

7 ;建筑节能技术保障体系[J];聚氨酯;2008年08期

8 杨勇平;徐二树;;分布式能量系统[J];现代电力;2007年05期

9 刘丽红;袁益超;刘聿拯;;分布式供能的现状与发展[J];热力发电;2006年08期

10 华贲,岳永魁,田中华,陈清林;考虑环境影响的分布式能源系统优化设计与运行策略研究[J];沈阳工程学院学报(自然科学版);2005年01期

相关博士学位论文 前1条

1 于波;微网与储能系统容量优化规划[D];天津大学;2012年

相关硕士学位论文 前3条

1 刘晓健;独立太阳能供电系统技术研究[D];华北电力大学;2015年

2 刘晓丹;冷热电联产系统分析与运行优化[D];大连理工大学;2007年

3 魏会东;楼宇冷热电联产系统的配置分析与集成应用研究[D];上海交通大学;2007年



本文编号:1486187

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1486187.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c0ec9***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com