双模板炭的制备及其超级电容器特性
本文关键词: 超级电容器 介孔分子筛 双模板炭 出处:《辽宁科技大学》2017年硕士论文 论文类型:学位论文
【摘要】:能源问题的日益严重,使得新能源的开发与利用尤为重要,超级电容器作为绿色环保的化学电源倍受人们关注。目前超级电容器的研究之中,开发高比容的电极材料具有重要的应用价值和理论意义。本文通过烷基偶联剂对介孔分子筛进行活化处理后,得到活化的介孔分子筛。以活化处理后的介孔分子筛为模板,乙炔为碳源,采用气相沉积法制备了炭沉积介孔分子筛,利用氢氟酸浸泡除去模板,得到双模板炭。并研究了其在超级电容器中作为电极材料的电化学性能。主要研究结果如下:1.通过烷基偶联剂六甲基二硅氧烷对介孔分子筛SBA-15进行活化,使两种性质差异很大的材料,无机粉体和有机高分子基体通过界面作用而牢固的结合在一起,得到活化的介孔分子筛。利用X-射线衍射(XRD)、红外光谱分析(FT-IR)、扫描电镜(SEM)、透射电镜(TEM)、物理吸附仪对材料表面形貌和成分进行表征,结果表明活化后的介孔分子筛发生了硅烷化反应,而介孔分子筛本身结构没有被破坏,经比表面分析得到活化后的介孔分子筛仍然有着较高的比表面积。2.通过气相沉积法将乙炔沉积到活化的介孔分子筛孔道内,通过控制沉积时间,制备了炭沉积三小时的活化分子筛、炭沉积六小时的活化分子筛和炭沉积九小时的活化分子筛,通过氢氟酸浸泡除去硅模板后得到不同炭沉积时间的双模板炭。通过XRD、SEM、TEM、物理吸附仪对材料表面形貌和成分进行表征,结果表明,实验制备的双模板炭保留了原模板整齐规则的孔道结构,具有较高的比表面积,还具有大部分介孔和一定量的微孔。其中炭沉积三小时的模板炭在电流密度为10 mA·g-1时,比电容为154 F·g-1,1000次循环后依然保持初始比电容的90%以上,且内阻仅为0.45Ω,说明导电性良好。介孔分子筛经过烷基偶联剂的活化,使得乙炔裂解的炭更易沉积在分子筛表面,不同沉积时间的双模板炭具有不同的比表面积和微孔量,较大的比表面积和较多的微孔更有利于材料与电解液离子的输运及储存电荷,使得其具有更好的电化学性能。
[Abstract]:The problem of energy becomes more and more serious, which makes the development and utilization of new energy more and more important. Supercapacitors, as a green chemical power supply, have attracted more and more attention. The development of electrode materials with high specific volume has important application value and theoretical significance. In this paper, the activated mesoporous molecular sieve was obtained by the activation of mesoporous molecular sieve by alkyl coupling agent. The activated mesoporous molecular sieve was used as template, and the activated mesoporous molecular sieve was used as template. Carbon deposited mesoporous molecular sieves were prepared by vapor deposition with acetylene as carbon source. Template was removed by immersion of hydrofluoric acid. Double template carbon was obtained and its electrochemical properties as electrode materials in supercapacitors were studied. The main results are as follows: 1.Activation of mesoporous molecular sieve SBA-15 by alkyl coupling agent hexamethyldisiloxane. That makes two very different materials, inorganic powder and organic polymer matrix, firmly bound together by interfacial action, The activated mesoporous molecular sieve was obtained. The surface morphology and composition of the materials were characterized by X- ray diffraction (XRD), FTIR, SEM, TEM and TEM. The results show that the activated mesoporous molecular sieves have silanized reaction, but the structure of the mesoporous molecular sieves has not been destroyed. The activated mesoporous molecular sieve still has a high specific surface area. 2. Acetylene was deposited into the porous channel of activated mesoporous molecular sieve by vapor deposition, and the deposition time was controlled. Activated molecular sieve for three hours of carbon deposition, activated molecular sieve for six hours for carbon deposition and activated molecular sieve for nine hours of carbon deposition were prepared. After the silicon template was removed by hydrofluoric acid immersion, the carbon with different carbon deposition time was obtained. The surface morphology and composition of the material were characterized by XRDX SEMMOTEM and physical adsorption apparatus. The double template carbon retained the regular pore structure of the original template, with a high specific surface area and a large number of mesoporous and micropores. When the carbon was deposited for three hours, the current density of the template carbon was 10 Ma 路g ~ (-1). The specific capacitance of 154F 路g-1g ~ (-1) 1 000 cycles still keeps above 90% of the initial specific capacitance, and the internal resistance is only 0.45 惟, which indicates that the conductivity of mesoporous molecular sieve is good. The activated mesoporous molecular sieve makes the carbon from acetylene cracking easier to deposit on the surface of molecular sieve. The double template carbon with different deposition time has different specific surface area and micropore quantity. Larger specific surface area and more micropore are more favorable for the transport and storage of charge between the material and electrolyte ions, which makes the carbon have better electrochemical performance.
【学位授予单位】:辽宁科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ127.11;TM53
【参考文献】
相关期刊论文 前10条
1 国帅;吕永根;杨常玲;;Na型Y沸石为模板制备多孔炭材料的研究[J];炭素技术;2011年01期
2 邱会华;刘应亮;曾江华;左诗笛;郑明涛;;简易模板法制备有序介孔碳[J];无机化学学报;2010年01期
3 华黎;;超级电容器发展与新能源汽车[J];汽车与配件;2009年48期
4 吴憩棠;周宏湖;;蓄电池+超级电容器混合电动车在沪多条公交线路示范运行 访上海瑞华(集团)有限公司董事长兼总裁帅鸿元[J];汽车与配件;2008年52期
5 李娜;王先友;易四勇;戴春岭;;模板法制备中孔碳材料[J];化学进展;2008年Z2期
6 王然;苗小丽;;大功率超级电容器的发展与应用[J];电池工业;2008年03期
7 陈英放;李媛媛;邓梅根;;超级电容器的原理及应用[J];电子元件与材料;2008年04期
8 巢亚军;原鲜霞;马紫峰;;复合材料在超级电容器中的应用研究进展[J];稀有金属材料与工程;2007年06期
9 Robert Tressler;超级电容器提供重要的高功率特性[J];电子产品世界;2004年20期
10 张治安,邓梅根,胡永达,杨邦朝;电化学电容器的特点及应用[J];电子元件与材料;2003年11期
相关博士学位论文 前2条
1 刘海晶;电化学超级电容器多孔碳电极材料的研究[D];复旦大学;2011年
2 刘亚菲;超级电容器活性炭电极材料的孔径调控和表面改性[D];同济大学;2008年
,本文编号:1530013
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1530013.html