改进粒子群PI控制在三相PWM整流器中的应用
本文选题:三相VSR 切入点:电网不平衡 出处:《湘潭大学》2017年硕士论文 论文类型:学位论文
【摘要】:随着电力电子技术的发展和科学技术的进步,用电设备对供电电源质量的要求也越来越高,三相电压型PWM整流器(三相VSR)因具备直流高压恒定输出、能量双向流动、无污染、单位功率因素运行等一系列优点被广泛应用在变流装置中。当三相PWM整流器运行在电网平衡的条件下具备良好的运行性能。然而在电力电子变流装置运行过程中,由于三相负载不平衡、单相大容量负载的使用、不对称故障等原因,不平衡现象是难以避免的。若忽略实际存在的不平衡条件,只采用传统的三相VSR控制策略,会在其网侧产生负序量,导致三相电流不平衡,造成三相VSR装置运行性能下降或不能正常运行的情况,严重时甚至烧毁装置。通常情况下,三相VSR运行时存在两方面的不平衡:一是三相电网本身存在不平衡,如相位、幅值不对称;二是三相VSR本身的参数不对称,导致系统运行不平衡。针对这一问题,本文将从不平衡条件下对三相VSR的控制策略出发,以研究改善其控制性能为目的,从以下几个方面进行论述:首先,对平衡条件下的三相电压型PWM整流器运行系统进行数学模型的建立和分析,然后给出其在三相静止abc坐标系下的数学模型转换到两相旋转dq坐标系下的过程。然后对不平衡条件下的三相VSR进行建模,分析了几种不平衡控制策略的优缺点。因提取的正、负序分量的谐波含量大小将对后续系统控制效果产生很大影响,所以选择一个好的正、负序量提取方法尤为重要。本文对比了两种不平衡条件下三相VSR正、负序量分离提取的方法(陷波器法和延时法),并分析其优缺点,选取了一种在理想状态下效果更好的方法(延时法)作为本文提取正负序量的方法。其次,本文选取了PI控制器作为调节器。PI控制器具有较强的鲁棒性、可靠性高且算法简单等优点。但在控制过程中,其参数整定过程繁杂,传统整定结果难以达到最优,最终导致控制系统性能不良,易产生超调及震荡。针对此问题,本文引入一种从平衡局部和全局搜索能力出发的改进粒子群优化算法,用于改善PI控制器的调节性能,使三相VSR达到更好的稳态性能。最后,在Matlab中首先验证了改进粒子群算法相比于原始粒子群算法的优越性;然后搭建了基于几种不平衡控制策略下三相VSR运行的仿真模型,对比应用改进粒子群PI控制器、传统PI控制器及标准粒子群PI控制器的效果,验证了应用本文所提改进粒子群PI控制器对三相VSR控制具有更好的效果。
[Abstract]:With the development of power electronic technology and the progress of science and technology, electrical equipment for power quality requirements are increasingly high, the three-phase voltage type PWM rectifier (phase VSR) with constant DC voltage output, two-way flow of energy, no pollution, a series of advantages of unit power factor operation is widely used in variable flow device. When the three-phase PWM rectifier operation has good performance in power balance condition. However, in the power electronic equipment in the process of operation, due to the unbalance of three-phase load, using single-phase large capacity load, asymmetric fault, imbalance phenomenon is difficult to avoid. If we ignore the actual existence of the unbalanced condition the use of three-phase VSR traditional control strategy can produce negative amount in the network side, resulting in unbalanced three-phase current, the operation performance of the three-phase VSR device decreased or not the normal running. Even when the serious situation, burn the device. Typically, the VSR runtime three-phase imbalance exists in two aspects: one is the three-phase power grid itself is not balanced, such as phase and amplitude asymmetry; two parameters of asymmetric three-phase VSR itself, so that the system operation is not balanced. In order to solve this problem, this paper will be the starting control strategy of VSR never three-phase equilibrium conditions, to improve the control performance for the purpose of research, discusses from the following aspects: firstly, the establishment and analysis of three-phase voltage type PWM rectifier system under equilibrium conditions of the mathematical model, and then gives the conversion in three-phase ABC coordinate system of the mathematical model of the two-phase process the rotating dq coordinate system. Then the modeling of three phase unbalance under the condition of VSR, analyses the advantages and disadvantages of unbalanced control strategy. Because the extraction of positive and negative sequence components of the harmonic content of size To follow the effect of control system have a great impact, so choose a good positive and negative sequence extraction method is particularly important. This paper compares two kinds of unbalanced conditions of three-phase VSR positive and negative sequence separation method (notch filter and delay method), and analyze its advantages and disadvantages, select a a method is better in ideal condition (delay method) as the extraction method of positive and negative sequence quantities. Secondly, this paper selects the PI controller as the regulator.PI controller has strong robustness, high reliability and simple algorithm. But in the control process, the parameter tuning process is complicated, the traditional setting it is difficult to achieve optimal results, resulting in poor performance of control system, easy to overshoot and oscillation. To solve this problem, this paper introduces a modified particle starting from the balance of local and global search ability of the swarm optimization algorithm was used to improve the PI controller Adjusting performance and steady-state performance of the three-phase VSR achieve better. Finally, first in the Matlab to verify the superiority of the improved particle swarm algorithm compared to the original particle swarm algorithm; and then build the simulation model of three-phase unbalance control based on VSR operation strategy under several contrast application of improved particle swarm optimization PI controller, PI controller and traditional standard particle swarm optimization PI controller, verify the application of the proposed improved particle swarm PI controller has better control effect on the three-phase VSR.
【学位授予单位】:湘潭大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP18;TM461
【参考文献】
相关期刊论文 前10条
1 王杰;李慧慧;彭金柱;;一种拟随机初始化模拟退火粒子群算法[J];郑州大学学报(理学版);2016年03期
2 肖理庆;王化祥;;利用改进粒子群算法优化ERT有限元模型[J];计算机应用研究;2017年05期
3 姜卫东;吴志清;李王敏;佘阳阳;胡杨;;电网不对称时抑制负序电流并网逆变器的控制策略[J];电工技术学报;2015年16期
4 年珩;沈永波;宋亦鹏;;不平衡及谐波电网电压下并网逆变器的直接功率控制策略[J];电网技术;2014年06期
5 郑征;张子伟;张振华;;电网不平衡时PWM整流器正负序分量计算方法[J];电力电子技术;2014年05期
6 杜雄;郭宏达;孙鹏菊;周雒维;;基于ANF-PLL的电网电压基波正负序分离方法[J];中国电机工程学报;2013年27期
7 郭旭刚;高增伟;尹靖元;金新民;马添翼;;不平衡电网电压下的PWM整流器功率预测[J];电网技术;2013年08期
8 吕学志;康忠健;梅永超;;基于无源性理论的电压不平衡条件下PWM整流器非线性控制策略[J];电力系统保护与控制;2013年06期
9 彭乐;张立民;邓向阳;;基于种群多样性模糊控制的粒子群算法[J];计算机仿真;2012年04期
10 程启明;程尹曼;薛阳;胡晓青;王映斐;;三相电压源型PWM整流器控制方法的发展综述[J];电力系统保护与控制;2012年03期
相关博士学位论文 前1条
1 尹忠刚;用于变频调速装置的三相PWM整流器若干技术问题研究[D];西安理工大学;2009年
相关硕士学位论文 前8条
1 田园;电网电压不平衡条件下三相PWM整流器控制技术研究[D];湖南大学;2015年
2 徐楚彦;PWM整流器的不平衡控制策略研究[D];华南理工大学;2014年
3 丁凯;不平衡电网下三相PWM整流器的自适应滑模控制[D];哈尔滨工业大学;2014年
4 王若宇;电网不平衡条件下三相PWM整流器控制及并联研究[D];东北大学;2014年
5 皇甫星星;三相电压型PWM整流器的研究与设计[D];南京航空航天大学;2013年
6 邓悦;电压型四象限PWM整流器研究与设计[D];华中科技大学;2013年
7 刘永生;电网电压不平衡时PWM整流器控制策略研究[D];西南交通大学;2011年
8 谭广军;电网不平衡条件下PWM整流器控制技术研究[D];哈尔滨工业大学;2008年
,本文编号:1585263
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1585263.html