风光互补微电网为电动汽车无线充电研究
发布时间:2018-03-12 13:39
本文选题:风光互补微电网 切入点:车载电池 出处:《天津工业大学》2016年硕士论文 论文类型:学位论文
【摘要】:电动汽车(Electric Vehicles,简称EVs)作为加快能源转型、实现低碳经济的重要途径引起了越来越多国家的重视,汽车的电气化是未来发展的必然趋势。然而,电动汽车充电问题一直是制约电动汽车发展的关键性问题之一,将新能源发电与电动汽车无线充电集成到微电网中,研究微电网为电动汽车无线充电控制策略将有效推进电动汽车的普及,同时有效增加新能源的消纳能力。本文采用微电网技术与无线电能传输技术相结合,研究了风光互补微电网的分层控制策略实现电动汽车的可靠充电,提供了电动汽车充电方式的新思路。利用光伏、风电和蓄电池组成独立风光互补微电网,通过分析光伏和风电能够输出的最大功率之和与负荷功率的关系得到系统可能的运行状态,建立风光互补微电网的分层控制策略。设计了上层中心控制器和底层控制器。上层中心控制器负责系统运行状态的选择、切换及对底层控制器的管理;底层控制器包括风电最大功率输出控制器、蓄电池的充放电控制器、高频逆变器侧直流母线端电压控制器及车载电池充电控制器。并对无线电能传输部分进行了设计,通过优化匹配发射端和接收端电感、电容参数,使系统在额定功率运行时处于谐振状态且达到最佳传能效率。在此基础上,为实现不同容量的车载电池接入,发射端直流母线采用恒压控制策略,电压参考值根据车载电池充电功率的不同而进行自适应调节。建立了风光互补微电网为电动汽车无线充电仿真与实验系统,仿真和实验结果表明:所采用的分层控制策略能确保当光照、风速变化和电动汽车的接入数量和功率变化时,风光互补微电网均能稳定可靠的为电动汽车进行无线充电。该方案有效解决了电动汽车充电对电网产生的冲击,提高了充电的灵活性。
[Abstract]:Electric vehicles (EVs), as an important way to accelerate energy transformation and realize low-carbon economy, has attracted more and more attention in more and more countries. The electrification of vehicles is an inevitable trend in the future. The problem of electric vehicle charging has been one of the key problems restricting the development of electric vehicle. The new energy generation and electric vehicle wireless charging are integrated into the microgrid. The research on wireless charging control strategy for electric vehicles will effectively promote the popularity of electric vehicles and increase the absorptive capacity of new energy sources. In this paper, the combination of microgrid technology and radio energy transmission technology is adopted. The layered control strategy of wind and wind complementary microgrid is studied to realize the reliable charging of electric vehicle, and a new idea of charging mode of electric vehicle is provided. The photovoltaic, wind power and battery are used to form independent wind complementary micro-grid. By analyzing the relationship between the sum of the maximum output power and the load power of photovoltaic and wind power, the possible operating state of the system is obtained. The upper central controller and the bottom controller are designed. The upper central controller is responsible for the selection of the system operation state, the switch and the management of the bottom controller. The bottom controller includes wind power maximum power output controller, battery charge and discharge controller, DC bus terminal voltage controller of high frequency inverter side and on-board battery charging controller. By optimizing the parameters of inductance and capacitance at the transmitter and receiver, the system is in the resonant state and the optimal energy transfer efficiency is achieved when the rated power is running. On this basis, in order to realize the on-board battery access with different capacity, The DC bus of the transmitter adopts the constant voltage control strategy, and the voltage reference value is adjusted adaptively according to the different charging power of the on-board battery. Simulation and experimental results show that the hierarchical control strategy can ensure that when the illumination, wind speed changes and the number and power of the electric vehicle access changes, The scheme can effectively solve the impact of electric vehicle charging on the grid and improve the flexibility of charging.
【学位授予单位】:天津工业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TM727;TM724;TM910.6
【相似文献】
相关期刊论文 前10条
1 郑漳华;艾芊;;微电网的研究现状及在我国的应用前景[J];电网技术;2008年16期
2 麻敏;韩继明;麻秀慧;陈衍妍;;浅谈微电网[J];科技资讯;2009年15期
3 楼书氢;李青锋;许化强;刘鲁丹;;国外微电网的研究概况及其在我国的应用前景[J];华中电力;2009年03期
4 杨为;丁明;毕锐;高研;丁银;;微电网实验平台的设计[J];合肥工业大学学报(自然科学版);2010年01期
5 袁清芳;周作春;陈艳霞;李香龙;陈国锋;;微电网发展应对策略[J];农村电气化;2010年10期
6 安智敏;罗时光;;微电网的概念及发展[J];内蒙古石油化工;2011年21期
7 王t,
本文编号:1601803
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1601803.html