当前位置:主页 > 科技论文 > 电气论文 >

射流冷却对动力锂电池组热环境控制的模拟研究

发布时间:2018-03-12 21:21

  本文选题:动力锂电池组 切入点:CFD 出处:《中原工学院》2017年硕士论文 论文类型:学位论文


【摘要】:动力锂电池以优良的性能表现在电子设备、工业产品、交通工具等领域被作为其核心部件广泛应用。在能源与环境问题越来越被重视的当今社会,电动汽车的技术公关与市场推广已成为各国关注的焦点。而作为其动力源的动力电池,制约以动力与速度为追求的电动汽车行业的健康发展。然而在电动汽车上,由于电池的能量密度低,在运用到电动汽车上作为动力来源时,动力电池必须组成大密度的成组结构形式为电动汽车提供了足够动力。组成电池组系统后的电池单体由于空间的限制排布紧密,导致在随后的使用过程中电池单体所散发出的热量聚集,且不易消除,这必然引起电池系统内部温度过高,也可能使电池组内的温度分布产生不一致。为解决动力电池系统在使用过程中出现的过热与温度不均的问题,本文进行了电池组热环境控制方法的研究,主要内容与结论如下:本文对动力锂电池系统的工作原理、成组构成与产热原理进行了研究分析,建立锂离子电池热效应模型,确定了动力锂电池组热环境控制的研究方法。基于均匀送风理论方法的研究分析,完成了利用射流冲击原理的强化散热冷却系统的设计。使用CFD数值模拟方法,对本文提出的大容量锂电池系统热环境控制方案进行详细研究,分析其对热环境的影响与作用效果。建立了均匀送风模块、送风模块控制单元与装配有完整的送风模块的电池组系统三种数值模型,分别从送风状态、送风参数、电池组模块温度场、压力场、气流组织等不同的角度对此射流强化散热方案进行研究分析,进行优化。对送风模块每支风道所控制的电池组单元的热环境进行数值模拟结果表明,多种送风工况下电池组最高温度为307.19K,最低温度306.53K,温差为0.65K,都远低于控制值,说明送风模块对电池组系统散热的改善效果是非常明显的。在此模型的基础上,分析了送风参数对电池组热环境的影响,增大通风冷却系统的风量能够降低电池组系统的最高温度与电池组系统内的温度差,但是仅改变送风温度难以到达控制电池组间温度差异的效果。对装配有完整的送风模块的电池组系统模型进行了数值模拟计算,确定了散热模块最优的气流组织形式。该模块在电池组系统的终温与温度均匀性控制性上均有良好表现,验证了带有射流强化散热模块对锂离子电池系统热环境的控制效果。本课题的研究内容为动力锂电池组热环境的控制提供了新方法,该研究成果可以作为实际运用的参考与依据。
[Abstract]:Power lithium battery is widely used as its core components in the fields of electronic equipment, industrial products, transportation and so on with its excellent performance. Nowadays, more and more attention is paid to energy and environment problems. The technical public relations and marketing of electric vehicles have become the focus of attention all over the world. As a source of power, the power battery restricts the healthy development of the electric vehicle industry, which is pursued by power and speed. However, in electric vehicles, Because of the low energy density of the battery, when applied to an electric vehicle as a power source, The battery must form a large density structure that provides enough power for the electric vehicle. The cells behind the battery pack system are tightly arranged due to space constraints. Resulting in the subsequent use of the battery monomer from the heat accumulation, and difficult to eliminate, which must lead to the battery system internal temperature is too high, In order to solve the problem of overheating and uneven temperature in power cell system, the method of controlling the thermal environment of battery pack is studied in this paper. The main contents and conclusions are as follows: in this paper, the working principle, group composition and heat production principle of power lithium battery system are studied and analyzed, and the thermal effect model of lithium ion battery is established. The research method of thermal environment control of power lithium battery pack is determined. Based on the research and analysis of uniform air supply theory, the design of enhanced cooling system based on jet impingement principle is completed. The CFD numerical simulation method is used. The thermal environment control scheme of large capacity lithium battery system proposed in this paper is studied in detail, and its influence and effect on thermal environment are analyzed. A uniform air supply module is established. The control unit of the air supply module and the battery pack system equipped with the complete air supply module have three numerical models, from the air supply state, the air supply parameters, the temperature field of the battery pack module, the pressure field, respectively. At different angles, such as airflow organization, the enhanced heat dissipation scheme of jet is studied and optimized. The numerical simulation results of the thermal environment of the battery pack unit controlled by each air duct in the air supply module show that, The maximum temperature of the battery pack is 307.19K, the lowest temperature is 306.53K, and the temperature difference is 0.65K, which is far below the control value, which shows that the effect of the air supply module on the heat dissipation of the battery pack system is very obvious. The influence of air supply parameters on the thermal environment of the battery pack is analyzed. The maximum temperature of the battery pack system and the temperature difference in the battery pack system can be reduced by increasing the air volume of the ventilation cooling system. However, it is difficult to achieve the effect of controlling the temperature difference between batteries by changing the air temperature. The numerical simulation of the battery pack system model with complete air supply module is carried out. The optimal airflow pattern of the heat dissipation module is determined. The module has good performance in controlling the final temperature and temperature uniformity of the battery pack system. The control effect of the heat dissipation module with jet enhancement on the thermal environment of the lithium ion battery system is verified. The research content of this paper provides a new method for the thermal environment control of the power lithium battery pack. The research results can be used as a reference and basis for practical application.
【学位授予单位】:中原工学院
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM912;U469.72

【参考文献】

相关期刊论文 前10条

1 杨胜义;;浅谈新能源汽车及其应用[J];时代汽车;2016年08期

2 巴斯夫;;未来的交通[J];汽车与配件;2016年15期

3 欧阳明高;;中国新能源汽车的研发及展望[J];科技导报;2016年06期

4 宋士刚;李小平;;电动汽车锂离子电池释热机理及电热耦合模型[J];电源技术;2016年02期

5 张新强;洪思慧;汪双凤;;增设通风孔的风冷式锂离子电池热管理系统数值研究[J];新能源进展;2015年06期

6 程昀;李R,

本文编号:1603336


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1603336.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f432e***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com