纳米金属表面等离子体共振优化染料敏化太阳能电池性能的研究
发布时间:2018-03-19 05:14
本文选题:表面等离子体共振 切入点:上转换功能材料 出处:《武汉大学》2017年硕士论文 论文类型:学位论文
【摘要】:为了解决工业迅速发展所带来的能源危机问题,人们越来越重视对新能源,尤其是清洁无污染的可再生能源的研究。其中,染料敏化太阳能电池因具有制造成本低、制造工艺简单以及光电转换效率高等优点而受到广泛地研究。本论文主要探究光阳极薄膜中引入贵金属纳米材料和上转换荧光材料后对染料敏化太阳能电池性能的影响及其产生机理。研究内容有以下两个方面:采用溶胶-凝胶法制备了纳米晶核壳结构的Au@Si02,并将此纳米颗粒按不同的质量比(Au@Si02:Ti02)掺入到染料敏化太阳能电池光阳极薄膜中。研究结果表明,Au@Si02的引入使得吸附在光阳极上的染料的光吸收增强,并显著提高了电池的短路电流密度Jsc和光电转换效率η。在0.3%质量比处电池性能最佳,对应的短路电流密度为15.5 mA·cm-2,光电转换效率达到6.49%,比纯的TiO2光阳极电池的效率提高了 17.5%。研究发现,电池性能的提高可归因于壳内Au纳米颗粒的局域表面等离子体共振增强光阳极上染料的光吸收以及Si02外壳层对暗电流的有效抑制。采用种子诱导生长法和水热法分别制备了不同晶粒尺寸的三角形银纳米片(简称"T-Ag")以及双核壳结构上转换材料NaYF4@SiO2@TiO2(简称"NST")。将质量比(mAg:mTiO2)为 0.5%的 T-Ag、质量比(mNST:mTiO2)为 15%的 NST分别引入到染料敏化太阳能电池光阳极薄膜中。研究结果显示,光阳极薄膜中单独引入T-Ag或NST时,电池的光电转换效率比基于传统光阳极电池分别提高了14.3%和10%。当光阳极薄膜中同时引入T-Ag和NST时,电池的短路电流密度和光电转换效率进一步提高,分别为16.27 mA.cm-2和6.99%,比基于传统的光阳极电池提高了 17.7%和22%。电池性能的显著改善归因于以下几个方面:(1)T-Ag的局域表面等离子体共振效应增加了染料对入射光的吸收强度;(2)T-Ag对入射光具有一定的散射性能,能增加入射光在薄膜中的光程,进而增加染料对光的捕获几率;(3)上转换材料能吸收近红外波段的光并将其转换为染料可吸收的可见光;(4)亚微米级上转换晶体可以作为米氏散射中心,有效提高染料对光的捕获率;(5)包覆的二氧化硅的壳层有效解决了 NaYF4:Er3+,Yb3+表面缺陷所导致的对光生载流子束缚问题。
[Abstract]:In order to solve the problem of energy crisis caused by the rapid development of industry, people pay more and more attention to the research of new energy, especially clean and non-polluting renewable energy. The advantages of simple manufacturing process and high optoelectronic conversion efficiency have been extensively studied in this paper. This paper mainly studies the performance of dye sensitized solar cells with the introduction of noble metal nanomaterials and up-conversion fluorescent materials into photoanode films. The effect and mechanism of Au@ Si02 were studied in two aspects: Au@ Si02 with nanocrystalline core-shell structure was prepared by sol-gel method, and the nano-particle was doped into dye sensitized solar cell with different mass ratio of Au@ Si02: Ti02). The results show that the introduction of Aur @ Si02 increases the optical absorption of the dyes adsorbed on the photocathode. The short-circuit current density (Jsc) and photoelectric conversion efficiency (畏) of the battery are significantly improved. The battery performance is the best at the mass ratio of 0.3%. The corresponding short-circuit current density is 15.5 Ma 路cm-2, and the photoelectric conversion efficiency is 6.49, which is 17.5% higher than that of pure TiO2 photoanode cell. The improvement of cell performance can be attributed to the enhancement of photoabsorption of dyes on the photocathode by local surface plasmon resonance (SPR) of au nanoparticles in the shell and the effective inhibition of dark current by Si02 shell layer. Seed induced growth and hydrothermal methods are used. Triangular silver nanoparticles with different grain sizes ("T-Ag") and binocore structure upconversion material NaYF4SiO2O2TiO2 ("NST") were prepared respectively. NST with mass ratio of 0.5% to 0.5% and NST of 15% to mNST-v-mTiO2 were introduced to dye sensitization respectively. The results show that, When T-Ag or NST is introduced into the photoanode film alone, the photoelectric conversion efficiency of the cell is 14.3% and 10 higher than that of the traditional photoanode cell, respectively. When T-Ag and NST are introduced into the photoanode film, The short-circuit current density and photoelectric conversion efficiency of the battery are further improved. The results were 16.27 mA.cm-2 and 6.99, respectively, which were 17.7% and 22 higher than those of the conventional photoanode battery. The remarkable improvement in the performance of the cell was attributed to the following aspects: the local surface plasmon resonance effect of 1: 1 T Ag increased the absorption of incident light by the dye. The T-Ag has a certain scattering property to the incident light. Can increase the path of incident light in the film, Furthermore, the upconversion material can absorb the light in the near infrared band and convert it into the visible light absorbable by dye. The sub-micron up-conversion crystal can be used as the center of the Micron scattering. The shell layer of silica coated with dye can effectively solve the problem of photoinduced carrier binding caused by the surface defects of NaYF4:Er3 Yb3.
【学位授予单位】:武汉大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM914.4
【参考文献】
相关期刊论文 前10条
1 李怀辉;王小平;王丽军;刘欣欣;梅翠玉;刘仁杰;江振兴;赵凯麟;;硅半导体太阳能电池进展[J];材料导报;2011年19期
2 王惟嘉;杨英;郭学益;田庆华;;准固态聚合物电解质在染料敏化太阳能电池中的应用[J];化学通报;2011年02期
3 张瑞锐;高源;唐波;;稀土掺杂氟化物纳米材料的上转换发光特征及其生物应用[J];分析科学学报;2010年03期
4 黄庆举;林继平;魏长河;姚若河;;硅太阳能电池的应用研究与进展[J];材料开发与应用;2009年06期
5 郭磊;潘旭;戴松元;;染料敏化太阳电池电解质[J];化学进展;2008年10期
6 冯瑞华;马廷灿;姜山;黄可;;太阳能级多晶硅制备技术与工艺[J];新材料产业;2007年05期
7 聂秋华;金哲;徐铁峰;戴世勋;沈祥;章向华;;蓝绿光上转换荧光输出的稀土掺杂玻璃研究进展[J];硅酸盐通报;2006年05期
8 梁茂,陶占良,陈军;染料敏化太阳能电池中的敏化剂[J];化学通报;2005年12期
9 姚伟;太阳能利用与可持续发展[J];中国能源;2005年02期
10 张彭义,余刚,蒋展鹏;半导体光催化剂及其改性技术进展[J];环境科学进展;1997年03期
,本文编号:1632965
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1632965.html