基于三角—多边形移相自耦变压器的多脉波整流系统的研究
发布时间:2018-03-27 15:57
本文选题:多脉波整流电路 切入点:自耦变压器 出处:《兰州交通大学》2017年硕士论文
【摘要】:由于电力半导体器件的非线性和时变性,整流系统向公用电网注入大量的电流谐波,不仅给电网带来额外负担,而且给用户带来负面影响,并降低了设备的效率。因此,抑制网侧谐波,实现节能减排,是一项重大的研究课题。由于MPR(Multipulse Rectifier,多脉波整流电路)具有成本低、结构简单和可靠性高的优点,其在大功率整流领域应用广泛,是消除网侧谐波成分的最有效方法之一。MPR能够实现谐波消除的核心器件是移相变压器,相比于隔离变压器,自耦变压器可以有效地降低MPR的成本、体积、重量和损耗。在分析MPR原理的基础上,设计了基于三角-多边形自耦变压器的24脉波整流电路,给出了三角-多边形24脉波自耦变压器的设计过程,改进了该变压器的结构以适用于传统的6脉波整流应用设备,该变压器的等效容量仅为负载功率的17.4%。建模、仿真并分析了基于三角-多边形自耦变压器的24脉波整流系统,结果表明,在负载变化时,网侧电流THD(Total Harmonic Distortion,谐波总畸变率)保持在6.1%以下,且输入PF(Power Factor,功率因数)接近于1,可应用于要求网侧电流THD小于8.0%的场合。为了使整流系统适用于更严苛的环境,设计了基于三角-多边形自耦变压器的36脉波整流电路,给出了三角-多边形36脉波自耦变压器的设计过程,该变压器的等效容量仅为负载功率的18.5%。建模、仿真并分析了基于三角-多边形自耦变压器的36脉波整流系统,结果表明,在负载变化时,网侧电流THD保持在4.3%以下,且输入PF接近于1,可应用于要求网侧电流THD小于5.0%的场合。因三角-多边形24和36脉波自耦变压器的结构较为复杂、制造困难,提出了基于直流侧有源谐波抑制技术的12脉波三角-多边形自耦变压整流电路,分析了基于直流侧有源谐波抑制技术的谐波电流补偿原理。建模、仿真并分析了该12脉波三角-多边形自耦变压整流电路,结果表明,在负载变化时,网侧电流THD保持在2.4%以下,输入PF接近于1,且减小了电压不平衡对线电流中谐波成分的影响,整流系统中电磁元件的总等效容量仅占输出功率的23%。因此,将MPR和直流侧有源谐波抑制技术相结合,达到了更好的抑制谐波效果,减小了整流系统的成本和损耗以及电源电压的不平衡对系统的影响,提高了系统的整流可靠性。
[Abstract]:Due to the nonlinear and time-varying characteristics of power semiconductor devices, the rectifier system injects a large amount of current harmonics into the public power network, which not only brings additional burden to the power network, but also brings negative effects to the users and reduces the efficiency of the equipment. It is an important research subject to suppress the harmonics on the network side and realize energy saving and emission reduction. Because of the advantages of low cost, simple structure and high reliability, the MPR(Multipulse Rectifier (multi-pulse rectifier) is widely used in the field of high-power rectifier. MPR is one of the most effective methods to eliminate harmonics on the grid side. The core device for harmonic elimination is phase shift transformer. Compared with isolation transformer, autotransformer can effectively reduce the cost and volume of MPR. Weight and loss. Based on the analysis of MPR principle, a 24-pulse rectifier circuit based on triangle-polygon autotransformer is designed, and the design process of triangle-polygon 24 pulse wave autotransformer is given. The structure of the transformer is improved to be suitable for the traditional 6-pulse rectifier application equipment. The equivalent capacity of the transformer is only 17.4 of the load power. The modeling, simulation and analysis of the 24-pulse rectifier system based on triangle-polygon autotransformer are presented. The results show that when the load changes, the THD(Total Harmonic distortion (total harmonic distortion rate) of the grid-side current remains below 6.1%. The input PF(Power factor (power factor) is close to 1, which can be applied to the situation where the THD of the network side current is less than 8.0%. In order to make the rectifier system suitable for more severe environment, a 36 pulse rectifier circuit based on triangle-polygon autotransformer is designed. The design process of the triangle-polygon 36 pulse wave autotransformer is presented. The equivalent capacity of the transformer is only 18.55.The modeling, simulation and analysis of the 36 pulse wave rectifier system based on the triangle polygon autotransformer are presented. The results show that, When the load changes, the current THD of the grid side is kept below 4.3%, and the input PF is close to 1, which can be applied to the situation where the THD of the network side current is less than 5.0%. Because of the complex structure of the triangle-polygon 24 and 36 pulse wave autotransformer, it is difficult to make. A 12-pulse triangular-polygonal self-coupled variable-voltage rectifier circuit based on DC side active harmonic suppression technique is proposed. The principle of harmonic current compensation based on DC side active harmonic suppression technique is analyzed. The simulation and analysis of the 12-pulse triangular-polygonal self-coupled variable-voltage rectifier circuit show that, when the load changes, the grid-side current THD is kept below 2.4%. The input PF is close to 1, and reduces the influence of voltage imbalance on harmonic component in line current. The total equivalent capacity of electromagnetic components in rectifier system is only 23% of output power. Therefore, MPR is combined with DC side active harmonic suppression technology. It achieves better harmonic suppression effect, reduces the cost and loss of the rectifier system and the influence of the unbalanced supply voltage on the system, and improves the reliability of the rectifier system.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM461
【参考文献】
相关期刊论文 前10条
1 苍胜;李渊;杨威;杨世彦;;一种用于12脉波整流器谐波抑制的交错并联变换器[J];电源学报;2014年04期
2 王冬梅;邹晓渔;戴钱坤;;DP型机载大功率18脉冲不对称自耦变压整流器[J];电力电子技术;2013年05期
3 孟凡刚;杨世彦;杨威;;六相三角形联结自耦变压器优化设计[J];电力自动化设备;2012年10期
4 佟为明;高蕾;王胤q,
本文编号:1672208
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1672208.html