永磁同步直线电机误差补偿及前馈控制技术研究
本文选题:永磁同步直线电机 切入点:前馈控制 出处:《中北大学》2016年硕士论文
【摘要】:永磁同步直线电机越来越多地应用于高速高精度的定位系统中。永磁直线电机驱动方式不需要中间转换环节,可直接提供直线运动,从而减少了因传动链而引入的误差,无需接触便可提供驱动力,进而得到较高的运行速度和较高的重复定位精度,使系统较为稳定。但正是由于直驱进给系统省去了中间转换环节,使得系统容易被外界扰动因素(如摩擦力、推力波动等)所影响,降低了系统的动态精度,容易引起系统不稳定,限制了永磁同步直线电机的应用。同时,仅采用反馈控制会出现电机响应滞后的问题,影响了电机的跟踪精度。因此有必要对抑制摩擦扰动和推力波动扰动的影响的方法以及对提高系统跟踪精度方法进行研究。本文首先基于dSPACE1103和Copley Xenus型驱动器搭建了电机的运动控制系统。对于推力波动扰动的抑制问题,通过分析推力波动特性,基于位置域频率和初相位信息建立了推力波动数学模型。电机在不同速度下运行时基于遗传算法辨识方法分别确定了实验直线电机的推力波动模型参数,以此设计推力波动前馈补偿器,实现直线电机的推力波动抑制。对于摩擦扰动的抑制问题,首先分析摩擦特性,选用Gauss摩擦模型。其次设计电机速度前馈控制器和加速度前馈控制器,仿真实验表明,加入速度和加速前馈后电机的最大位置跟踪误差明显下降。根据电机在不同速度下测得的摩擦力值,运用差分进化算法辨识出直线电机的摩擦模型参数,以此设计摩擦前馈补偿器,实现永磁同步直线电机的摩擦抑制。针对纯反馈所引起的位置跟踪误差大的问题,根据前期电机调试的经验,结合模糊推理方式为Mamdani推理法的模糊逻辑理论,设计了带可调因子的模糊逻辑前馈控制器。应用该前馈控制器,经仿真分析可得,电机的最大位置跟踪误差从原先的17.8μm降到1μm;将其加载到电机实验控制系统中,测得电机最大位置跟踪误差从18.3μm降到了4.3μm,验证了该方法的有效性。本文以永磁同步直线电机为被控对象搭建了运动仿真分析系统和实验平台,研究了对影响系统跟踪性能的摩擦力和推力波动进行抑制的方法,并基于模糊逻辑理论设计了带可调因子的模糊逻辑前馈控制器。这有助于提高直驱进给系统的伺服性能,对于直驱进给系统的应用是有意义、有价值的。
[Abstract]:Permanent magnet linear synchronous motor (PMSM) is more and more used in high speed and high precision positioning system. The driving force can be provided without contact, and then higher running speed and high repeatable positioning accuracy can be obtained, which makes the system more stable. However, it is precisely because the direct drive feed system saves the intermediate conversion link, The system is easily affected by external disturbance factors (such as friction, thrust fluctuation, etc.), which reduces the dynamic precision of the system, easily leads to the instability of the system, and limits the application of the permanent magnet synchronous linear motor (PMSM). Only feedback control will lead to the problem of motor response lag. Therefore, it is necessary to study the methods of restraining friction disturbance and thrust fluctuation disturbance and to improve the tracking accuracy of the system. Firstly, this paper is based on dSPACE1103 and Copley Xenus driver. The motion control system of the motor is presented. By analyzing the characteristics of thrust fluctuation, Based on the position domain frequency and initial phase information, the mathematical model of thrust fluctuation is established, and the parameters of thrust fluctuation model of experimental linear motor are determined based on genetic algorithm identification method when the motor is running at different speeds. A feedforward compensator for thrust fluctuation is designed to suppress the thrust fluctuation of linear motor. The Gauss friction model is selected. Secondly, the speed feedforward controller and acceleration feedforward controller are designed, and the simulation results show that, The maximum position tracking error of the motor decreases obviously after adding speed and acceleration feedforward. According to the friction force measured by the motor at different speeds, the friction model parameters of linear motor are identified by differential evolution algorithm. The friction feedforward compensator is designed to suppress friction of permanent magnet synchronous linear motor. Aiming at the problem of large position tracking error caused by pure feedback, according to the experience of the previous motor debugging, A fuzzy logic feedforward controller with adjustable factors is designed based on the fuzzy logic theory of Mamdani reasoning method. The maximum position tracking error of the motor is reduced from 17.8 渭 m to 1 渭 m. The maximum position tracking error is reduced from 18.3 渭 m to 4.3 渭 m, which verifies the effectiveness of this method. In this paper, a motion simulation analysis system and an experimental platform for permanent magnet synchronous linear motor (PMSM) are built. In this paper, the method of restraining friction and thrust fluctuation affecting the tracking performance of the system is studied, and a fuzzy logic feedforward controller with adjustable factors is designed based on the fuzzy logic theory, which is helpful to improve the servo performance of the direct drive feed system. It is meaningful and valuable to the application of direct drive feed system.
【学位授予单位】:中北大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TM359.4
【参考文献】
相关期刊论文 前10条
1 张继东;;永磁直线同步电动机推力波动抑制[J];微特电机;2015年07期
2 孔小兵;刘向杰;;永磁同步电机高效非线性模型预测控制[J];自动化学报;2014年09期
3 牟恩旭;马振群;冯斌;任建功;;利用数控机床换向特性分析的摩擦误差补偿方法[J];西安交通大学学报;2014年08期
4 冯斌;梅雪松;杨军;黄晓勇;;摩擦补偿脉冲特征参数的自适应配置方法[J];上海交通大学学报;2014年05期
5 王福忠;张利敏;;基于迭代算法的PMLSM推力波动抑制策略[J];计算机仿真;2014年05期
6 李立毅;祝贺;刘家曦;马明娜;;初级绕组分段永磁直线电机段间推力优化控制[J];电机与控制学报;2014年04期
7 王丽梅;李鑫;;直接驱动XY平台的零相位自适应鲁棒控制[J];沈阳工业大学学报;2014年02期
8 唐传胜;戴跃洪;;无速度传感器永磁同步直线电机伺服系统的自适应鲁棒控制[J];组合机床与自动化加工技术;2013年11期
9 刘柏希;姚昊雄;聂松辉;;基于区间分析的LuGre摩擦模型参数辨识方法[J];中国机械工程;2013年19期
10 冯斌;梅雪松;杨军;牟恩旭;;数控机床摩擦误差自适应补偿方法研究[J];西安交通大学学报;2013年11期
相关硕士学位论文 前7条
1 徐斌;永磁同步电机矢量控制系统研究[D];南京理工大学;2014年
2 林雪;基于LuGre摩擦模型的参数辨识与补偿控制研究[D];济南大学;2013年
3 胡超杰;差分进化算法及其在电机参数辨识中的应用研究[D];湖南大学;2013年
4 刘巍;大推力永磁直线电机驱动控制系统研究与开发[D];华中科技大学;2011年
5 苑士鑫;基于直线电机的驱动控制研究[D];哈尔滨工业大学;2009年
6 孙宗宇;永磁同步直线电机的矢量控制[D];兰州理工大学;2009年
7 汤新舟;永磁同步电机的矢量控制系统[D];浙江大学;2005年
,本文编号:1677777
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1677777.html