基于局部积分均值分解方法的电能质量检测与分析
本文选题:经验模态分解 切入点:局部积分均值分解 出处:《中国矿业大学》2017年硕士论文
【摘要】:HHT作为现如今较为常用的时频分析方法之一,与FFT分析、小波变换以及S变换等处理方法相比较,在非线性、非稳态信号的处理以及自适应性等方面建立了一定的优势。但HHT在信号处理分析过程中依旧存在一些弊端,因此本文的工作主要是对HHT方法存在的缺点进行分析和改进,并将改进的HHT方法运用到电能质量扰动检测与分析领域。首先,针对HHT方法存在的均值曲线拟合、模态混叠、虚假分量以及端点效应等问题,提出了一种新的自适应时频分析方法——局部积分均值分解(Local Integral Mean Decomposition,LIMD)方法。该方法针对单分量信号的特点,重新定义了具有瞬时物理意义的单分量信号,提高了分解固有模态函数的有效性。针对EMD方法插值拟合效果差以及耗时时间长的缺点,改进了均值曲线的拟合方式,将积分中值定理引入到均值曲线的拟合过程中,运用极值点间的全部数据作为特征时间尺度,且只采用一次插值拟合的方式。通过仿真实验表明该方法提高了算法的计算效率以及在端点效应和虚假分量的抑制上取得了一定的改进效果。其次,针对LIMD方法在模态混叠效应以及分辨率低等问题还需进一步改进,提出一种自适应集总局部积分均值分解(Adaptively Ensemble Local Integral Mean Decomposition,AELIMD)方法。该方法分析不同频率形式噪声对极值点分布的影响,确定加噪频率采用高频辅助分解的优势,并以极值点分布特性作为评价指标自适应选择最优加噪频率。通过对EEMD加噪准则的研究,推导出加噪幅值和分解次数采取固定值:0.01 SD和2次,且以正负成对的形式加入到原始信号中。通过仿真实验验证了所提方法的自适应性和计算性能。最后,将改进的HHT方法(AELIMD方法与Hilbert变换)运用到电能质量扰动检测分析中。运用AELIMD方法对含噪的电能质量信号进行去噪分解,采用二阶导数的方式求得模极大值点,提高了通过模极大值点定位扰动时刻的准确性。针对高频复合扰动采取两次AELIMD分解方法去除噪声与虚假分量有效提取出扰动成分;针对稳态扰动提出先去除谐波再提取闪变包络的检测方法;针对未知复合扰动给出了基于HHT方法的检测思路。仿真结果表明了所提方法的有效性和可行性。并搭建了电能质量扰动实验平台,通过实验装置模拟产生真实的电网扰动故障,采用实测数据验证所提方法的检测效果,综合检验了AELIMD方法在电能质量扰动检测工程领域具有一定优势。
[Abstract]:Compared with FFT analysis, wavelet transform and S transform, HHT is one of the most commonly used time-frequency analysis methods. Some advantages have been established in the unsteady signal processing and adaptive analysis, but there are still some drawbacks in the signal processing and analysis of HHT, so the main work of this paper is to analyze and improve the shortcomings of the HHT method. The improved HHT method is applied to the field of power quality disturbance detection and analysis. Firstly, aiming at the problems of mean curve fitting, modal aliasing, false component and endpoint effect of HHT, etc. A new adaptive time-frequency analysis method, Local Integral Mean decomposition method (LIMD), is proposed, which redefines a single component signal with instantaneous physical meaning according to the characteristics of a single component signal. The efficiency of decomposing inherent mode function is improved. Aiming at the disadvantages of poor interpolation effect and time-consuming time of EMD method, the fitting method of mean value curve is improved, and the integral mean value theorem is introduced into the fitting process of mean curve. Using all the data between extremum points as the characteristic time scale, The simulation results show that the proposed method improves the computational efficiency of the algorithm and improves the endpoint effect and the suppression of false components. Secondly, the simulation results show that the proposed method improves the efficiency of the algorithm. Aiming at the problems of modal aliasing effect and low resolution of LIMD method, further improvement is needed. An adaptive Ensemble Local Integral Mean decomposition (AELIMD) method is proposed, in which the influence of noise in different frequency forms on the distribution of extreme points is analyzed, and the advantages of high frequency auxiliary decomposition are determined. The optimal noise frequency is adaptively selected by using the distribution of extreme points as the evaluation index. Through the study of the EEMD noise adding criterion, the amplitude and decomposition times of the noise adding are deduced by the fixed value: 0. 01 SD and 2 times. The proposed method is added to the original signal in the form of positive and negative pairs. The self-adaptability and computational performance of the proposed method are verified by simulation experiments. Finally, The improved HHT method and Hilbert transform are applied to the detection and analysis of power quality disturbance. The noised power quality signal is de-noised by AELIMD method, and the modulus maximum is obtained by the second-order derivative. The accuracy of locating disturbance time by modulus maximum is improved. The disturbance components are effectively extracted from noise and false components by twice AELIMD decomposition method for high frequency complex disturbance. Aiming at steady state disturbance, a detection method of flicker envelope is proposed, which removes harmonics first and then extracts flicker envelopes. The detection method based on HHT method is presented for unknown complex disturbances. The simulation results show that the proposed method is effective and feasible. A power quality disturbance experimental platform is built to simulate the real power grid disturbance faults. By using the measured data to verify the detection effect of the proposed method, the AELIMD method has some advantages in the field of power quality disturbance detection engineering.
【学位授予单位】:中国矿业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM711;TM930
【参考文献】
相关期刊论文 前10条
1 吴新忠;邢强;渠虎;王前进;杨春雨;;CEEMD在电能质量扰动检测中的应用[J];电力系统保护与控制;2017年03期
2 任子晖;刘昊岳;徐进霞;;基于小波变换和改进Prony方法的电能质量扰动分析[J];电力系统保护与控制;2016年09期
3 孔德同;刘庆超;雷亚国;范炜;丁小川;王志;;一种改进的EEMD方法及其应用研究[J];振动工程学报;2015年06期
4 张建海;韩迎春;吴功友;李连周;刘军;;改进EMD方法及其在运载火箭振动信号分析中的应用[J];导弹与航天运载技术;2015年06期
5 关维国;姚清志;高阳;鲁宝春;;基于db4小波的配电网暂态电能质量扰动的检测与定位[J];电力系统保护与控制;2015年08期
6 肖助力;龚仁喜;陈双;于槟华;贾僖泉;;基于改进S变换的电力系统谐波检测方法[J];电力系统保护与控制;2015年03期
7 张逸;林焱;吴丹岳;;电能质量监测系统研究现状及发展趋势[J];电力系统保护与控制;2015年02期
8 张友鹏;周郁;赵珊鹏;王思华;董海燕;;基于改进EMD的接触网绝缘子泄漏电流去噪[J];计算机工程与应用;2014年22期
9 郑近德;程军圣;杨宇;;基于LCD和排列熵的滚动轴承故障诊断[J];振动.测试与诊断;2014年05期
10 付学谦;陈皓勇;刘国特;金小明;;分布式电源电能质量综合评估方法[J];中国电机工程学报;2014年25期
相关博士学位论文 前4条
1 张超;间谐波环境下SAPF检测及补偿控制技术研究[D];中国矿业大学;2014年
2 郑近德;局部特征尺度分解方法及其在机械故障诊断中的应用研究[D];湖南大学;2014年
3 张郁山;希尔伯特—黄变换(HHT)与地震动时程的希尔伯特谱[D];中国地震局地球物理研究所;2003年
4 盖强;局域波时频分析方法的理论研究与应用[D];大连理工大学;2001年
相关硕士学位论文 前4条
1 邢建平;电网间谐波检测与电能质量复合扰动识别方法研究[D];中国矿业大学;2016年
2 彭港;改进HHT方法及其在拉索振动信号处理中的应用[D];广州大学;2014年
3 刘德利;HHT算法及其在电力系统中的应用研究[D];哈尔滨工业大学;2011年
4 陈一贤;HHT方法分析[D];浙江大学;2007年
,本文编号:1681127
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1681127.html