光伏发电功率持续时间特性的概率分布定量分析
发布时间:2018-04-08 14:33
本文选题:光伏发电 切入点:持续时间特性 出处:《电力系统自动化》2017年06期
【摘要】:随着光伏发电渗透率在电力系统中的快速增加,电网的规划和调度过程中均有必要对其进行精细化的考虑。但光伏发电功率具有较强的随机性,对其稳态功率特性的描述需要采用概率统计手段。首先根据光伏出力运行点及其波动限值定义了光伏出力状态,然后针对光伏出力维持在某一状态不变的时间长度进行了定量研究,提出了光伏发电功率持续时间分布的概念。基于德国和中国实测数据的分析表明:光伏出力的持续时间分布存在明显的双峰值特征,适合采用逆高斯分布和广义极值分布函数进行加权混合拟合;双峰值特征表明,光伏发电可能在局部云层扰动下出现快速功率波动,从而只能在数分钟内保持出力状态不变,也可能在天气条件良好时跟随日地运动缓慢变化,其出力可维持某一状态长达数小时。所述研究可用于光伏发电功率调度控制过程中测量和决策周期的选定、光伏电站输出波动限值检验等,进而为输电系统中设备的设计选型提供重要的参考依据。
[Abstract]:With the rapid increase of photovoltaic (PV) generation permeability in power system, it is necessary to consider it carefully in the planning and dispatching process of power network.However, photovoltaic power generation has a strong randomness, the description of its steady-state power characteristics needs the use of probability and statistics.Firstly, the state of photovoltaic output is defined according to the operating point of photovoltaic force and its fluctuation limit. Then, the concept of power duration distribution of photovoltaic power generation is put forward, which is based on the quantitative study of the time length of photovoltaic output force being maintained in a certain state.The analysis based on the measured data in Germany and China shows that the duration distribution of photovoltaic force has obvious double peak characteristics, which is suitable for weighted mixed fitting using inverse Gao Si distribution and generalized extreme distribution function.Photovoltaic power can fluctuate rapidly under local cloud disturbances, so that it can only remain the same for a few minutes, or it may follow the slow motion of the sun and earth when the weather conditions are good.Its output can maintain a certain state for several hours.The research can be used to determine the measurement and decision period in the process of PV power dispatching and control, to check the limit of output fluctuation of photovoltaic power plant, and to provide an important reference basis for the design and selection of equipment in transmission system.
【作者单位】: 强电磁工程与新技术国家重点实验室(华中科技大学);ABB(中国)有限公司ABB中国研究院;
【基金】:国家自然科学基金资助项目(51577075) 国家重点研发计划资助项目(2016YFB0900400,2016YFB0900403) 中国博士后科学基金资助项目(2016M590694)~~
【分类号】:TM615
【相似文献】
相关期刊论文 前10条
1 刘士荣;李松峰;宁康红;周啸波;荣延泽;;基于极端学习机的光伏发电功率短期预测[J];控制工程;2013年03期
2 ;科技文摘[J];中学物理教学参考;1994年08期
3 王丽婕;廖晓钟;高阳;高爽;;风电场发电功率的建模和预测研究综述[J];电力系统保护与控制;2009年13期
4 田丽;邓阅;;联合条件下风力发电风速预测[J];安徽工程大学学报;2012年03期
5 卢静;翟海青;刘纯;王晓蓉;;光伏发电功率预测统计方法研究[J];华东电力;2010年04期
6 徐星;张虹;乐海洪;徐敏;;采用气象信息的神经网络应用于短期风力发电功率预测[J];南昌大学学报(工科版);2011年01期
7 阿碧;;身背核电站移民外星[J];发明与创新(综合科技);2011年11期
8 许昌;李e,
本文编号:1722035
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1722035.html