碳基超级电容器一致性制备与性能研究
本文选题:超级电容器 + 绿色能源 ; 参考:《太原理工大学》2017年硕士论文
【摘要】:能源是人类赖以生存的基础,随着科技、人类生活以及生产活动的高速发展,能源的需求量越来越大。传统能源(尤其是化石类原料和燃料)因开采或利用而引起的环境问题日益凸显。寻找新的可再生替代能源是维持人类可持续发展的唯一途径,如何提高能源的利用效率?如何最大限度地利用低品位能源?一直是众多科学家研究的重点课题。随着太阳能、风能和海洋能等间歇性绿色能源的发展,储能技术在工业节能和新能源利用领域日益受到关注。储能技术是能源科学技术中的重要分支,可解决能量供求方面时间与空间不匹配的问题,从而可作为提高能源利用效率的有效手段。超级电容器作为一种介于传统物理电容器和电池之间的一种新型储能器件,具有充放电速度快、对环境无污染、循环寿命长等优点,有希望成为本世纪新型绿色能源。电极材料和电解液是超级电容器的主要组成部分,同时也是制约超级电容器性能的两大关键因素,电极材料性能直接决定了超级电容器输出性能的高低,电解液决定超级电容器的工作电压,同时两者的匹配性能也至关重要。活性炭是应用最广的电极材料,而有机电解液常用于商用超级电容器。本论文针对超级电容器电极材料、电解液等因素对超级电容器电化学性能的影响进行分析,通过一致性研究,制备了低内阻、高容量、稳定性高的超级电容器,通过电化学工作站及Land电池测试仪分析了活性炭超级电容器及石墨烯/活性炭超级电容器的性能。研究结果表明:(1)超级电容器一致性制备研究。通过严格控制制备工艺流程,包括极片尺寸、加压压力,电极片在电解液浸泡时间,从中获得最优制备工艺:极片直径14 mm,不加压,极片在电解液抽真空后浸泡60 h,再次抽真空后继续浸泡12 h。一致性制备提高超级电容器性能的同时,减小了超级电容器实验数据的差异。(2)超级电容器的性能与活性炭比表面积、孔径分布有密切关系,尤其是粒径一致性、孔径分布范围决定超级电容器循环稳定性。不同电解液适合不同的电极材料,四氟硼酸双吡咯螺环季铵盐/碳酸丙烯酯(SBP-BF4/PC)适应于富含介孔、微孔的材料,如电容炭、韩国活性炭等,而四氟硼酸四乙基铵盐/碳酸丙烯酯(TEA-BF4/PC)更适应孔径在微介孔(2 nm左右)的材料,如日本可乐丽50F、80F等。(3)石墨烯能够显著提高活性炭超级电容器性能。石墨烯具有独特的二维空间结构,良好的导电性能,石墨烯添加到80F活性炭超级电容器中充当导电剂,电荷转移电阻减小,比容量高达137.5 F·g-1,是纯80F活性炭超级电容器的1.23倍。然而由于存在赝电容导致的化学反应,内阻增大,超级电容器循环稳定性有所降低,提高制备石墨烯的纯度有利于提高超级电容器循环稳定性。
[Abstract]:Energy is the basis of human survival. With the rapid development of science and technology, human life and production activities, the demand for energy is increasing.Environmental problems caused by exploitation or utilization of traditional energy sources (especially fossil materials and fuels) have become increasingly prominent.Finding new renewable alternative energy is the only way to maintain the sustainable development of human beings. How to improve the efficiency of energy use?How to maximize the use of low-grade energy?It has been the focus of many scientists.With the development of intermittent green energy, such as solar energy, wind energy and oceanic energy, energy storage technology has been paid more and more attention in the field of industrial energy saving and new energy utilization.Energy storage technology is an important branch of energy science and technology, which can solve the problem of time and space mismatch in energy supply and demand, thus it can be used as an effective means to improve the efficiency of energy use.As a new type of energy storage device between traditional physical capacitors and batteries, supercapacitors have the advantages of fast charge and discharge speed, no pollution to the environment, long cycle life and so on. It is expected to become a new type of green energy in this century.Electrode materials and electrolyte are the main components of supercapacitors, and also the two key factors that restrict the performance of supercapacitors. The performance of electrode materials directly determines the output performance of supercapacitors.Electrolyte determines the working voltage of supercapacitors and their matching performance is also very important.Activated carbon is the most widely used electrode material, and organic electrolyte is often used in commercial supercapacitors.In this paper, the effects of electrode materials and electrolyte on the electrochemical performance of supercapacitors are analyzed. The supercapacitors with low internal resistance, high capacity and high stability are prepared by consistency study.The properties of activated carbon supercapacitors and graphene / activated carbon supercapacitors were analyzed by electrochemical workstation and Land battery tester.The results show that: 1) the consistency of supercapacitors is studied.By strictly controlling the preparation process, including electrode size, pressure, electrode plate immersion time in the electrolyte, the optimal preparation process is obtained: the diameter of the electrode is 14 mm, the electrode is not pressurized,The electrode was immersed in the electrolyte for 60 hours after vacuum, and then continued to soak for 12 hours.The properties of supercapacitors were improved while the difference of experimental data was reduced. 2) the properties of supercapacitors were closely related to the specific surface area and pore size distribution of activated carbon, especially the consistency of particle size.The range of pore size distribution determines the cycle stability of supercapacitor.Different electrolytes are suitable for different electrode materials. Tetrafluoroboric acid bispyrrole spirocyclic quaternary ammonium salt / propylene carbonate SBP-BF4 / PC) is suitable for materials rich in mesoporous and microporous materials, such as capacitor carbon, Korean activated carbon, etc.Tetrafluoroborate tetraethyl ammonium salt / propylene carbonate TEA-BF4 / PC) is more suitable for materials with micromesoporous pore size of about 2 nm, such as Japanese cola 50F, 80F, etc.) graphene can significantly improve the performance of activated carbon supercapacitors.Graphene has a unique two-dimensional space structure and good conductivity. Graphene is added to 80F activated carbon supercapacitor as a conductive agent, the charge transfer resistance is reduced and the specific capacity is up to 137.5 F g-1, which is 1.23 times as high as that of pure 80F activated carbon supercapacitor.However, due to the chemical reaction caused by pseudo-capacitance, the internal resistance increases, and the cycle stability of supercapacitor is decreased. Therefore, improving the purity of graphene preparation is beneficial to improve the cyclic stability of supercapacitor.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM53
【参考文献】
相关期刊论文 前9条
1 刘双宇;巩学海;徐丽;盛鹏;陈新;韩钰;王博;赵广耀;刘海镇;;介孔碳/石墨烯复合材料的制备及在超级电容器中的应用[J];硅酸盐学报;2017年02期
2 李雪芹;常琳;赵慎龙;郝昌龙;陆晨光;朱以华;唐智勇;;基于碳材料的超级电容器电极材料的研究[J];物理化学学报;2017年01期
3 周宏明;孙文佼;李荐;;Preparation of spiro-type quaternary ammonium salt via economical and efficient synthetic route as electrolyte for electric double-layer capacitor[J];Journal of Central South University;2015年07期
4 余丽丽;朱俊杰;赵景泰;;超级电容器的现状及发展趋势[J];自然杂志;2015年03期
5 郑冬芳;贾梦秋;徐斌;张浩;曹高萍;杨裕生;;高性能超级电容器用高比表面积、层次孔结构炭材料的简便制备(英文)[J];新型炭材料;2013年02期
6 龚迎莉;杨锐明;禚玉群;;CE-440型元素分析仪测定有机样品中的碳氢氮[J];分析仪器;2012年01期
7 王琴;李建玲;高飞;李文生;武克忠;王新东;;超级电容器用聚苯胺/活性炭复合电极的研究(英文)[J];新型炭材料;2008年03期
8 刘亚菲;胡中华;许琨;郑祥伟;高强;;活性炭电极材料的表面改性和性能[J];物理化学学报;2008年07期
9 陈英放;李媛媛;邓梅根;;超级电容器的原理及应用[J];电子元件与材料;2008年04期
,本文编号:1744866
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1744866.html