高效率有机太阳能电池的设计、制作及光伏性能研究
发布时间:2018-04-14 20:55
本文选题:有机太阳能电池 + 高光电转化效率 ; 参考:《南昌航空大学》2017年硕士论文
【摘要】:有机太阳能电池(Organic solar cells,OSCs)具有材料来源广泛、质量轻、制备工艺简单、可大面积制备等优点,是一种极具应用潜力的光伏技术。为了实现OSCs实用化,进一步提高其光电转化效率(PCE)是目前研究的焦点。有机太阳能电池由电极材料、活性层材料和界面层材料组成。活性层材料和界面层材料调控对OSCs光电转化效率的提高起到至关重要的作用。合适的活性层材料可以拓宽光吸收范围,提高激子分离效率。合适的界面层材料能有效抑制激子复合,降低活性层/电极界面的接触电阻。本论文拟从活性层和空穴传输界面层两个方面对OSCs进行改性,进一步提高OSCs的光电转化效率。1、传统活性层由一个电子给体和一个电子受体二元共混而成。针对二元共混活性层的缺点,特别是在光吸收范围上的限制,本论文发展了三元共混活性层。本论文在PTB7:PC71BM二元共混体系基础上,加入自制小分子第三组份,拓宽活性层的光吸收范围,实现大幅提高有机太阳能的光电转化效率。本论文合成了一系列小分子第三组份,其中小分子FTR吸光范围最宽,向PTB7:PC71BM二元共混体系中加入15%w/w的FTR后,光电转化效率从7.0%提高到8.3%。研究发现,向PTB7:PC71BM二元共混体系中加入FTR后,FTR可与PTB7发生电子转移,这能显著提高电池的短路电流。加入FTR后,活性层的激子分离不仅发生在PTB7与PC71BM之间,也发生在PTB7与FTR之间,这可以显著增加激子解离,促进填充因子的提高。短路电流与填充因子的提高导致OSCs光电转化效率显著提高。2、界面层材料包括传输电子界面层材料和传输空穴界面层材料。其中传输空穴界面层材料发展滞后,目前商业化产品只有PEDOT:PSS一种。PEDOT:PSS具有酸性和吸湿性,不利于器件的长期稳定。特别是绝缘的PSS和强各向异性的PEDOT会限制电荷的传输和收集,不利于电池光电转化效率的提高。针对PEDOT:PSS的缺点,本论文开发了一系列新型的pH中性共轭聚电解质(Conjugated polyelectrolytes,CPEs)类空穴传输界面层材料。光电转化效率测试结果表明,本论文开发的CPEs可以促进活性层与电极形成欧姆接触,从而提高电池开路电压;具有高且均匀的电导率,可以提高空穴提取效率,降低激子复合,从而提高电池短路电流和填充因子;具有pH值中性的特点,从而提高器件的稳定性。使用本论文开发的CPEs作为空穴传输层,OSCs光电转化效率得到显著提高。
[Abstract]:Organic solar cells (OSC) is a promising photovoltaic technology with wide range of materials, light weight, simple preparation process, large area preparation and so on.In order to realize the practicality of OSCs, it is the focus of research at present to further improve its photoelectric conversion efficiency.Organic solar cells are composed of electrode material, active layer material and interface layer material.The regulation of active layer material and interfacial layer material plays an important role in improving the photoelectric conversion efficiency of OSCs.The suitable active layer material can widen the range of light absorption and improve the efficiency of exciton separation.The suitable interfacial layer material can effectively restrain exciton recombination and reduce the contact resistance of the active layer / electrode interface.In this thesis, the OSCs was modified from the active layer and the hole transport interface layer to further improve the photoelectric conversion efficiency of OSCs. The traditional active layer was composed of an electron donor and an electron receptor binary blend.In view of the shortcomings of binary blend active layer, especially the limitation of optical absorption range, the ternary blend active layer has been developed in this paper.In this paper, based on the PTB7:PC71BM binary blend system, the third component of small molecule is added to widen the range of light absorption of active layer and achieve a significant increase in the photoconversion efficiency of organic solar energy.In this paper, a series of third components of small molecules have been synthesized, in which the absorption range of small molecule FTR is the widest. With the addition of FTR of 15%w/w to PTB7:PC71BM binary blend system, the photoelectric conversion efficiency is increased from 7.0% to 8.3%.It is found that the addition of FTR to PTB7:PC71BM binary blends can result in electron transfer with PTB7, which can significantly increase the short circuit current of the battery.After the addition of FTR, the exciton separation of the active layer occurs not only between PTB7 and PC71BM, but also between PTB7 and FTR, which can significantly increase exciton dissociation and increase the filling factor.The increase of short circuit current and filling factor leads to a significant increase in the photoelectric conversion efficiency of OSCs. The interfacial layer materials include transmission electronic interface layer material and transmission hole interface layer material.The material of transport hole interface layer is lagging behind. At present, only one kind of commercial product, PEDOT:PSS, is acidic and hygroscopically absorbent, which is not conducive to the long-term stability of the device.In particular, insulating PSS and strongly anisotropic PEDOT will limit the transmission and collection of charges, which is not conducive to the improvement of the photovoltaic conversion efficiency of the cell.In order to overcome the disadvantages of PEDOT:PSS, a series of novel pH neutral conjugated polyelectrolyte (CPEs) hollow transport interface layer materials have been developed in this paper.The results of photoelectric conversion efficiency test show that the CPEs developed in this paper can promote the ohmic contact between the active layer and the electrode, thus increase the open circuit voltage of the battery, have high and uniform conductivity, improve the hole extraction efficiency and reduce the exciton recombination.Thus, the short-circuit current and filling factor of the battery are improved, and the stability of the device is improved because of the neutral pH value.Using the CPEs developed in this paper as the hole transport layer, the photoelectric conversion efficiency has been improved significantly.
【学位授予单位】:南昌航空大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM914.4
【参考文献】
相关期刊论文 前5条
1 刘晓东;李永舫;;阴极界面修饰层改善平面p-i-n型钙钛矿太阳能电池的光伏性能[J];电化学;2016年04期
2 胡洪超;崔英德;;聚合物太阳能电池及材料研究进展[J];化工学报;2016年S1期
3 童金辉;熊思醒;周印华;;有机叠层太阳能电池的研究进展[J];储能科学与技术;2014年06期
4 张秀清;李艳红;张超;;太阳能电池研究进展[J];中国材料进展;2014年07期
5 张剑;杨秀程;冯晓东;;有机太阳能电池结构研究进展[J];电子元件与材料;2012年11期
相关博士学位论文 前2条
1 余璇;聚合物太阳电池性能优化:活性层、电子传输层及其表面修饰[D];南开大学;2014年
2 贺超;共轭聚电解质及氧化钼作为电极修饰层对聚合物太阳电池性能的影响[D];华南理工大学;2011年
相关硕士学位论文 前3条
1 谢谌;水/醇溶性共轭聚合物的设计及用于高效聚合物太阳能电池界面调控[D];南昌大学;2014年
2 李秋娟;液晶小分子掺杂ZnO纳米晶及PEDOT:PSS用于聚合物太阳能电池形貌调控及性能研究[D];南昌大学;2013年
3 翟志淳;溶液法制备聚合物太阳能电池阳极界面层的研究[D];苏州大学;2013年
,本文编号:1750982
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1750982.html