当前位置:主页 > 科技论文 > 电气论文 >

基于需求响应的住宅用户电力负荷调度及其控制器设计

发布时间:2018-04-25 02:25

  本文选题:需求响应控制 + 负荷预测 ; 参考:《山东大学》2017年硕士论文


【摘要】:近年来我国住宅用户用电量逐年提升,电力负荷峰谷差逐渐加大。为削减住宅用户峰谷负荷差,基于分时电价的电力需求响应项目被广泛实施,然而住宅用户参与度并不高。如何有效利用分时电价提高住宅用户需求响应参与度已成为学术界和企业界共同关注的热点问题。提高住宅用户需求响应参与度需从两方面问题入手:如何辅助用户制定电器工作计划,以减少用户日常工作量;如何自动控制所有用电器的起停,降低电费支出。围绕这两方面问题,本文做了以下研究工作:首先,分析了住宅用户电器使用特性,建立了基于点对点倍比法的电器使用行为与耗电量预测模型;依据光伏发电的昼夜周期性规律,建立了基于点对点倍比法的光伏输出功率预测模型。通过上述模型预测出电器工作计划。算例分析结果表明,负荷预测模型可有效减少用户制定电器工作计划的工作量。然后,针对不同电器的可控性,分别建立了以电器使用时间为决策变量的电器耗电量模型;分别以住宅用户最小电费支出及削减峰荷为负荷调度目标,两次调度电器使用时间;根据部分电器使用时间具有连续性特点,设计算法简化模型求解过程。算例分析结果表明,所提方法可明显降低电费支出及削减耗电量峰值。最后,设计了住宅用户需求响应控制器,包括硬件电路与软件流程设计,结合预测出的电器工作计划与负荷调度方法,通过控制器与智能插座协同工作以控制电器的起停。为住宅用户自动参与电力需求响应提供了一个基本解决方案。
[Abstract]:In recent years, the electricity consumption of residential users in China has been increasing year by year, and the peak and valley difference of power load has gradually increased. In order to reduce the peak and valley load difference of residential users, the electricity demand response project based on time-sharing price has been widely implemented, but the participation of residential users is not high. How to effectively use time-sharing price to improve the participation of residential users in response to demand has become a hot issue that both academia and business circles pay attention to. It is necessary to improve the participation of residential users in response to demand from two aspects: how to assist the users in drawing up the work plan of electrical appliances in order to reduce the daily workload of users, and how to automatically control the starting and stopping of all electrical appliances and reduce the cost of electricity. Around these two problems, this paper has done the following research work: first, analyzed the residential consumer electrical appliance usage characteristic, established the electrical appliance use behavior and the electricity consumption forecast model based on the point to point ratio method; According to the circadian periodicity of photovoltaic power generation, a photovoltaic output power prediction model based on point-to-point ratio method is established. The electrical work plan is predicted by the above model. The result of example analysis shows that the load forecasting model can effectively reduce the work load of the user to make the electrical work plan. Then, aiming at the controllability of different electrical appliances, the electric power consumption model with the electric appliance service time as the decision variable is established, and the minimum electric charge expenditure and the peak load reduction of the residential users are taken as the load dispatching targets respectively, and the service time of the twice dispatching apparatus is taken as the load dispatching target. According to the continuity of some electrical appliances, the algorithm is designed to simplify the process of solving the model. The results of example analysis show that the proposed method can significantly reduce the cost of electricity and the peak value of power consumption. Finally, the design of residential user demand response controller, including hardware circuit and software flow design, combined with the predicted electrical work plan and load scheduling method, through the controller and intelligent socket to work together to control the start and stop of electrical appliances. It provides a basic solution for residential users to participate in electricity demand response automatically.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM73

【相似文献】

相关重要报纸文章 前10条

1 记者 刘菊花;2008年全国住宅用户满意度测评结果发布[N];经济参考报;2009年

2 齐中熙;住宅用户满意度重庆最高北京最低[N];经济参考报;2006年

3 记者 李志豹;08年度全国住宅用户满意度测评结果发布[N];中国企业报;2009年

4 记者 宋赜;2005年全国住宅用户满意度逾七成[N];中国建设报;2006年

5 璐文;住宅用户满意度首度出现下降[N];工人日报;2008年

6 孙蔚;住宅用户满意度7年来首次下降[N];中国消费者报;2008年

7 记者 陆昀;住宅用户满意度首度下降[N];中华工商时报;2008年

8 张九陆;你是否遵守契约?[N];通信产业报;2008年

9 记者 刘霞;2009全国住宅用户 满意度测评结果发布[N];中国质量报;2010年

10 周小燕 黄浩;羊城装电话年头旺到年尾[N];通信产业报;2000年

相关硕士学位论文 前2条

1 王彦邦;基于需求响应的住宅用户电力负荷调度及其控制器设计[D];山东大学;2017年

2 邬钧云;城市住宅用户满意度比较研究[D];江西理工大学;2012年



本文编号:1799355

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1799355.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a7fe4***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com