基于1000kV特高压交流输电线路的电磁环境研究
本文选题:1000kV特高压交流 + 电场强度 ; 参考:《兰州交通大学》2017年硕士论文
【摘要】:为了实现能源的高效利用,逐步形成以电能为中心的能源格局,同时也应对越来越明显的能源资源与能源需求的逆向分布问题等,国家正大力建设特高压电网以满足社会发展的需求。特高压交流输电设备可能产生的电磁危害已经引起人们的关注与担忧。有许多学者对特高压交流输电设备可能造成的电磁辐射进行过研究。但是,选取的特高压交流输电线路模型简单,输电杆塔单一,与实际特高压交流输电工程有着较大差距;考虑特高压交流输电线路对人体的影响比较简单,多将人体看为一个求解域等。基于此,本文研究现行较多采用的特高压交流输电杆塔和改进的特高压交流输电杆塔线路附近的电磁环境变化规律,并作出电磁环境安全评估。论文基于现行的1000kV特高压交流输电工程,分析一些常见因素,如离地高度、相间距、线路分裂根数、线路排线方式、双回路相序和计及线路弧垂等因素对特高压交流输电线路周围工频电磁场分布的影响,同时对现行的1000kV特高压交流ZMP1猫头型输电杆塔线路和采用国家电网一些主要研究单位提出的紧凑型输电杆塔线路周围工频电场和工频磁场的分布情况进行比较分析。结合国内外权威期刊给出的人体尺寸与机体组织电磁参数,同时进行部分验证,构建贴近实际的人体模型。研究1000kV特高压交流ZMP1猫头型和紧凑型输电杆塔线路在长年常见的天气情况下计及实际弧垂线路以及经过具有典型高度差区域的线路下方的人体附近和人体内部,包括人体躯干和人体头部的头皮、颅骨、脑组织以及脑组织中的头部中枢神经系统等的电场强度、电流密度和磁感应强度分布规律,并对几种仿真计算结果进行对比分析。对于电磁辐射安全,与国际通用的ICNIRP(International Commission on Non-Ionizing Radiation Protection,国际非电离辐射防护委员会)导则中的职业人员限值和普通民众限值标准进行比较,作出电磁辐射安全评估,并给出防护建议。结果表明:我国目前的1000kV特高压交流输电线路,对位于其附近的人体中产生的电场强度、电流密度较大值部分主要集中于人体的机体组织连接处以及腿部。现行的ZMP1猫头型1000kV特高压交流输电杆塔线路在人体内产生的电场强度和磁感应强度没有超过ICNIRP导则中普通民众限值,电流密度则在人体组织连接处与腿部存在超出ICNIRP普通民众限值的风险,但没有超过ICNIRP导则中的职业人员限值。而采用紧凑型输电杆塔的1000kV特高压交流输电线路能较大地降低在人体中产生的电场强度、电流密度和磁感应强度。对于在1000kV特高压交流ZMP1猫头型输电杆塔线路附近的普通民众,应注意对身体组织关节处以及腿部的电磁辐射防护。
[Abstract]:In order to realize the efficient use of energy and gradually form the energy pattern centered on electric energy, the reverse distribution of energy resources and energy demand is becoming more and more obvious. The country is vigorously building UHV power grids to meet the needs of social development. The possible electromagnetic hazard caused by UHV AC transmission equipment has attracted people's attention and concern. Many scholars have studied the possible electromagnetic radiation caused by UHV AC transmission equipment. However, the selected UHV AC transmission line model is simple, the transmission tower is single, and there is a big gap between the UHV AC transmission line and the actual UHV AC transmission project, and the influence of UHV AC transmission line on human body is relatively simple. Look at the human body as a solution field and so on. Based on this, this paper studies the electromagnetic environment variation law around the UHV AC transmission tower and the improved UHV AC transmission tower, and makes the electromagnetic environment safety assessment. Based on the current 1000kV UHV AC transmission project, this paper analyzes some common factors, such as height from the ground, phase spacing, line splitting root number, line arrangement, The influence of phase sequence and phase sequence of double loop on the distribution of power frequency electromagnetic field around UHV AC transmission line considering the sag of transmission line, At the same time, the distribution of power frequency electric field and power frequency magnetic field around the current 1000kV UHV AC ZMP1 cat head transmission tower line and the compact transmission tower line proposed by some main research units of State Grid are compared and analyzed. Combining the size of human body and the electromagnetic parameters of organism tissue given by authoritative journals at home and abroad at the same time some verification is carried out to construct the human body model which is close to the actual situation. In this paper, 1000kV UHV AC ZMP1 cat head and compact transmission tower lines are studied, which take into account the actual sag line and the human body under the line passing through the typical height difference area under the usual weather conditions for many years. The electric field intensity, current density and magnetic induction intensity distribution of the scalp, skull, brain tissue and the head central nervous system in the human torso and human head are included. The results of several simulation calculations are compared and analyzed. The safety of electromagnetic radiation is compared with the occupational limit in the guidelines of ICNIRP(International Commission on Non-Ionizing Radiation Protection. the International Committee on Non-Ionizing radiation Protection and the standard of limit for ordinary people. The safety of electromagnetic radiation is evaluated and some protection suggestions are given. The results show that the current density of the current 1000kV UHV AC transmission line is mainly focused on the tissue junction and the legs of the human body for the electric field intensity generated in the human body located near the current UHV AC transmission line. The current ZMP1 cat head 1000kV UHV AC transmission tower line produces no more electric field intensity and magnetic induction intensity in the human body than the ordinary people's limit in the ICNIRP guidelines. On the other hand, there is a risk that the current density will exceed the ICNIRP limit for the general public at the junction of human tissue and legs, but not above the limit for professional personnel in the ICNIRP guidelines. The 1000kV UHV AC transmission line with compact transmission tower can greatly reduce the electric field intensity, current density and magnetic induction intensity produced in human body. For the ordinary people in the vicinity of the 1000kV UHV AC ZMP1 cat head transmission tower line, the electromagnetic radiation protection should be paid attention to at the joints of the body tissue and the legs.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM75
【参考文献】
相关期刊论文 前10条
1 吕健双;李健;罗超;;不均匀冰对重冰区特高压输电线路对地及交叉跨越距离的影响分析与研究[J];陕西电力;2017年03期
2 罗超;查智明;徐鹏;华雪莹;姚为方;;1000kV特高压交流输电线路空间电磁环境的计算模型研究[J];电力科技与环保;2016年03期
3 宋卫东;;我国与国际能源署用电量指标对比分析[J];中国能源;2016年03期
4 方雅琪;彭勇;苏梓铭;唐盼;刘凯;吴田;王力农;;特高压紧凑型线路带电作业人员体表电场仿真计算[J];中国电力;2015年10期
5 邹岸新;徐禄文;;相序对特高压交流输电线下工频电磁场影响的仿真分析研究[J];高压电器;2015年03期
6 王青于;杨熙;廖晋陶;王浩然;吴昊;彭宗仁;;特高压变电站人体工频电场暴露水平评估[J];中国电机工程学报;2014年24期
7 石力博;罗艺霞;陈平;;工频电场的职业卫生评价[J];环境与职业医学;2014年02期
8 李文军;周春艳;;鄂尔多斯地区典型输变电工程环境影响分析[J];内蒙古科技与经济;2013年09期
9 邓军;肖遥;楚金伟;李立mg;赵宇明;张建功;;云南—广东±800kV特高压直流线路无线电干扰仿真计算与测试分析[J];高电压技术;2013年03期
10 刘振亚;;中国特高压交流输电技术创新[J];电网技术;2013年03期
相关博士学位论文 前2条
1 肖冬萍;特高压交流输电线路电磁场三维计算模型与屏蔽措施研究[D];重庆大学;2009年
2 牛林;特高压交流输电线路电磁环境参数预测研究[D];山东大学;2008年
相关硕士学位论文 前8条
1 陈博栋;特高压输电线路电磁环境数值模拟研究[D];兰州交通大学;2015年
2 陈小燕;基于COMSOL软件的大地电磁正演模拟[D];长安大学;2014年
3 王桠男;工频电磁辐射对小学生健康指标的影响研究[D];武汉科技大学;2014年
4 王婷婷;超/特高压输电线路雷电屏蔽性能方法研究[D];重庆大学;2013年
5 张永涛;基于悬链线理论的线缆建模和仿真研究[D];南京航空航天大学;2013年
6 庄晓芸;交流1000kV输电线工频电磁场与输送功率及其影响因素研究[D];重庆大学;2012年
7 程炜;特高压输电线路电磁环境的数值仿真研究[D];郑州大学;2011年
8 杨志福;220kV及110kV地下电力电缆工频磁场研究[D];华北电力大学(北京);2009年
,本文编号:1815337
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1815337.html