基于改进ECOC分类器的直流电缆终端接头局放模式识别
本文选题:直流电缆 + 局放信号图 ; 参考:《中国电机工程学报》2017年04期
【摘要】:绝缘缺陷问题直接影响直流XLPE电缆的运行安全,而准确的绝缘状态诊断对保证直流输电系统正常运行具有重要意义,由于直流电缆的故障诊断目前研究处于起步阶段,且局部放电特征与交流XLPE电缆具有明显区别。针对直流XLPE电缆出现的绝缘缺陷以及产生的局部放电特点,该文设计了4种直流XLPE电缆终端接头典型的绝缘缺陷物理模型,根据q-(35)t-n(即放电幅值,放电间隔,放电次数)局放信号图,提出了基于改进ECOC分类器的直流电缆终端局放模式识别法。首先,对局放信号图进行轮廓波(Contourlet)变换,并计算各子带系数的Tsallis熵,将其作为特征向量,带入自适应布谷鸟优化稀疏编码阵的ECOC分类器(ACS-SR-ECOC)实现缺陷模式识别。通过对大量试验数据测试,验证了所提出的识别方法在直流XLPE电缆终端接头绝缘缺陷的诊断效果,相比与4种传统的ECOC分类器,所提出的ACS-SR-EOCO分类器的识别准确率更高,至少提高10.3%。
[Abstract]:The problem of insulation defect directly affects the safety of DC XLPE cable operation, and accurate insulation condition diagnosis is of great significance to ensure the normal operation of HVDC transmission system, because the fault diagnosis of DC cable is still in its infancy. The characteristic of partial discharge is obviously different from that of AC XLPE cable. Aiming at the insulation defects and partial discharge characteristics of DC XLPE cables, four typical physical models of insulation defects in terminal joints of DC XLPE cables are designed in this paper. Based on the improved ECOC classifier, a DC cable terminal PD pattern recognition method is proposed. Firstly, the contour wave Contourlet (Contourlet) transform is applied to the partial discharge signal map, and the Tsallis entropy of the coefficients of each sub-band is calculated, which is used as the eigenvector and brought into the ECOC classifier ACS-SR-ECOC, which is an adaptive cuckoo sparse optimized coding matrix, to realize the defect pattern recognition. By testing a large number of experimental data, the results show that the proposed method can diagnose insulation defects of terminal joints of DC XLPE cables. Compared with four traditional ECOC classifiers, the proposed ACS-SR-EOCO classifier has higher recognition accuracy. Increase at least 10. 3.
【作者单位】: 上海交通大学电气工程系;
【基金】:国家重点基础研究发展计划项目(973项目)(2014CB239506) 国家电网公司科技项目资助(52110115007J)~~
【分类号】:TM855
【相似文献】
相关期刊论文 前10条
1 陈刚,戚飞虎;多分类器结合的人脸识别[J];上海交通大学学报;2001年02期
2 韩宏,杨静宇,娄震;基于层次的分类器组合[J];南京理工大学学报(自然科学版);2002年01期
3 赵谊虹,程国华,史习智;多分类器融合中一种新的加权算法[J];上海交通大学学报;2002年06期
4 王卫东;郑宇杰;杨静宇;;智能分类器方法[J];江苏科技大学学报(自然科学版);2007年01期
5 钟将;冯永;李志国;叶春晓;;基于自适应免疫分类器的入侵检测[J];重庆大学学报(自然科学版);2007年07期
6 叶云龙;杨明;;基于随机子空间的多分类器集成[J];南京师范大学学报(工程技术版);2008年04期
7 赵洋;冀俊忠;李文斌;;基于复杂网络的分类器融合[J];科学技术与工程;2008年14期
8 夏俊;刘金梅;;不同分类器在遥感数据分类中的性能比较[J];价值工程;2013年04期
9 ;逻辑设计讲座——第八讲 标志信号和标志分类器[J];贵州机械;1979年04期
10 N.B.Venkateswarlu ,P.S.V.S.K.Raju ,艾东;一种新的遥感影象快速分类器[J];干旱区地理;1993年04期
相关会议论文 前10条
1 王占一;徐蔚然;刘东鑫;郭军;;一种基于两级分类器的垃圾短信过滤方法[A];第五届全国信息检索学术会议论文集[C];2009年
2 翟静;李海宏;唐常杰;陈敏敏;李智;;可验证对象集分类器的再训练演进[A];第十九届全国数据库学术会议论文集(研究报告篇)[C];2002年
3 陈继航;刘家锋;赵巍;唐降龙;;联机手写识别笔段特征分类器的学习方法[A];黑龙江省计算机学会2009年学术交流年会论文集[C];2010年
4 穆明生;;基于特征集的多种分类器模型的在线笔迹认证[A];第十届全国信号处理学术年会(CCSP-2001)论文集[C];2001年
5 彭涛;左万利;赫枫龄;;基于链接上下文的分类器主题爬行技术(英文)[A];第二十三届中国数据库学术会议论文集(技术报告篇)[C];2006年
6 王岚;陈珂;迟惠生;;基于多特征组合多分类器的方法用于“与文本无关”的说话人辨认[A];第四届全国人机语音通讯学术会议论文集[C];1996年
7 谢秋玲;;应用于心电图分类的KNN-SVM分类器研究[A];2006中国控制与决策学术年会论文集[C];2006年
8 胡琼;汪荣贵;胡韦伟;孙见青;;基于级联分类器的快速人脸检测方法[A];计算机技术与应用进展·2007——全国第18届计算机技术与应用(CACIS)学术会议论文集[C];2007年
9 李兰春;王双成;杜瑞杰;;认知结构评估的动态贝叶斯网络分类器方法[A];2011年中国智能自动化学术会议论文集(第一分册)[C];2011年
10 邵小健;段华;贺国平;;一种改进的最少核分类器[A];中国运筹学会第七届学术交流会论文集(上卷)[C];2004年
相关重要报纸文章 前1条
1 黄明;精子分类器决定生男生女[N];广东科技报;2000年
相关博士学位论文 前10条
1 张非;对抗逃避攻击的防守策略研究[D];华南理工大学;2015年
2 张文博;多类别智能分类器方法研究[D];西安电子科技大学;2014年
3 许劲松;智能交通中目标检测与分类关键技术研究[D];南京理工大学;2014年
4 余家林;普通场景视频人脸检测与识别的关键技术研究[D];浙江大学;2016年
5 赵作林;基于图像分析的北京地区杨树种类识别研究[D];北京林业大学;2015年
6 任亚峰;基于标注和未标注数椐的虚假评论识别研究[D];武汉大学;2015年
7 曹鹏;不均衡数据分类方法的研究[D];东北大学;2014年
8 刘明;分类器组合技术研究及其在人机交互系统中的应用[D];北京交通大学;2008年
9 严志永;在划分数据空间的视角下基于决策边界的分类器研究[D];浙江大学;2011年
10 王U,
本文编号:1822335
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1822335.html