当前位置:主页 > 科技论文 > 电气论文 >

基于RT-LAB的分布式光伏运行与控制半实物模拟研究

发布时间:2018-05-03 08:34

  本文选题:光伏系统 + RT-LAB ; 参考:《东南大学》2016年硕士论文


【摘要】:随着经济的快速发展,生活水平的不断提高,人们对化石燃料的消耗日益增加,这给地球环境带来了巨大压力,引发了资源短缺、温室效应、环境污染等严重问题。因此,充分开发利用可再生能源具有十分重要的意义。太阳能具有环保、可再生、储量丰富等优点,因此被越来越广泛的关注,其主要利用方式为光伏并网发电。太阳能属于间歇性能源,光伏发电系统受多种外界条件影响,包括光照强度和环境温度等,考虑外界环境因素充分开发利用太阳能资源是当前的研究热点,光伏电池并网前需经过DC/DC整流变换及DC/AC逆变变换,本文采用Boost升压电路实现光伏电池的DC/DC变换及光伏电池的最大功率点跟踪(MPPT)控制,采用全桥逆变电路,并选择电压电流双闭环控制策略完成光伏电池的DC/AC逆变变换,实现光伏并网。光伏并网的实验验证方法包括数字仿真及物理模拟。数字模拟操作相对简单且实验参数可变,然而其结果的准确性不及动态模拟,很多实际物理情况也不能模拟。物理模拟可以直接观察不同物理现象的物理过程,以得到直观明确的物理概念,然而待研究系统的物理规模不能太大,且装置参数的调节范围有限。物理模拟及数字仿真具备不同的实验特征,因此其适用范围也不同,两种实验方法相互配合才是最好的试验验证方案。因此,本文同时结合数字仿真和物理模拟,采用RT-LAB半实物实时仿真软件进行分布式光伏运行与控制模拟研究。首先,本文从研究现状着手,分析了数字仿真及物理模拟的发展过程及两者的优缺点,总结出同时结合数字仿真及物理模拟是更好的解决方案,并简要介绍了本文的主要研究内容。然后,本文根据光伏电池发电原理等效数学表达式,在MATLAB/siumlink环境中建立了光伏仿真模型,并针对不同光照强度、环境温度开展光伏电池输出特性仿真模拟和数据分析;总结了现有最大功率点跟踪策略,在MATLAB/siumlink环境搭建了MPPT模型,开展相同仿真步长下不同MPPT控制算法的仿真对比分析,对不同控制策略的优缺点进行了总结,并对不同仿真步长下的仿真结果进行对比分析;对现有典型光伏并网拓扑结构及控制策略进行了分析,因电压电流双闭环控制策略具有简明、可靠、实用的特点,本文采用该控制策略进行半实物仿真验证,考虑到硬件误差,本文采用增量式PID控制替代传统的位置式PID控制,以提高半实物仿真的准确性。其次,本文开展了自适应多种控制算法检测的半实物仿真平台接口设计,主要分析MPPT控制算法及双闭环控制算法硬件模拟所采用的控制电路,本文采用以Freescale公司的MC56F8257芯片为核心器件的控制电路,并介绍了该控制电路的特点及控制程序设计方案。最后,本文开展了基于RT-LAB的半实物仿真平台构建及试验验证,首先对RT-LAB实时仿真器进行了简要介绍,在此基础上研究光伏模拟系统在RT-LAB中的实时仿真流程,详细介绍了Matlab离线仿真模型到RT-LAB实时仿真模型的实时化过程。接着从MPPT控制实物化角度研究不同MPPT算法,并采用一种改进的MPPT算法进行硬件控制器设计,结合RT-LAB实时仿真平台建立数字主电路,进行数模混合实时仿真验证,对比分析改进MPPT算法与传统MPPT算法的控制效果,验证改进控制算法的有效性及优越性;最后从逆变器控制算法实物化角度,对双闭环控制算法的控制效果进行验证。
[Abstract]:With the rapid development of economy and the continuous improvement of living standards, the consumption of fossil fuels is increasing, which brings great pressure to the earth environment. It has caused serious problems such as resource shortage, greenhouse effect, environmental pollution and so on. Therefore, it is of great significance to fully exploit and utilize renewable energy sources. Because of the advantages of birth, abundant reserves and so on, it is becoming more and more widely concerned, its main use is photovoltaic grid connected power generation. Solar energy belongs to intermittent energy, photovoltaic power generation system is affected by various external conditions, including light intensity and environmental temperature. Considering the external environment factors, the full exploitation and utilization of solar energy is the current research hotspot. The photovoltaic cells need to undergo DC/DC rectifier transformation and DC/AC inverter before the grid. This paper uses Boost boost circuit to realize DC/DC transformation of photovoltaic cells and maximum power point tracking (MPPT) control of photovoltaic cells. The full bridge inverter circuit is adopted, and the dual closed loop control strategy of voltage and current is selected to complete the DC/AC inverter transformation of the photovoltaic cell, and the photovoltaic cell is realized. The experimental verification methods of photovoltaic grid connection include digital simulation and physical simulation. The digital simulation operation is relatively simple and the experimental parameters are variable. However, the accuracy of the results is less than the dynamic simulation, and many physical conditions can not be simulated. Physical simulation can directly observe the physical process of different physical phenomena, so as to be intuitively clear. The physical scale of the system is not too large, and the range of the device parameters is limited. The physical simulation and digital simulation have different experimental characteristics, so the application range is different. The two experimental methods are the best test verification scheme. Therefore, this paper combines digital simulation and physics at the same time. Simulation, using RT-LAB semi physical real time simulation software to carry out distributed PV operation and control simulation. First, this paper analyzes the development process of digital simulation and physical simulation and the advantages and disadvantages of both digital and physical simulation, and summarizes a better solution with the combination of digital simulation and physical simulation, and the brief introduction of this method. Then, based on the equivalent mathematical expression of the photovoltaic cell generation principle, a photovoltaic simulation model is established in the MATLAB/siumlink environment, and the simulation and data analysis of the output characteristics of the photovoltaic cells are carried out according to the different light intensity and environment temperature, and the existing maximum power point tracking strategy is summarized in the MATLAB/s. The iumlink environment builds the MPPT model, carries out the simulation contrast analysis of different MPPT control algorithms under the same simulation step, sums up the advantages and disadvantages of different control strategies, and compares the simulation results under different simulation steps, analyzes the existing typical photovoltaic grid topology structure and control strategy, and the voltage electricity is due to the voltage electricity. The flow double closed loop control strategy is simple, reliable and practical. This paper uses this control strategy to verify the hardware in the loop simulation. Considering the hardware error, this paper uses incremental PID control instead of the traditional position PID control to improve the accuracy of the hardware in the loop simulation. The interface design of the physical simulation platform is designed, which mainly analyzes the control circuit used by the MPPT control algorithm and the hardware simulation of the double closed loop control algorithm. This paper uses the MC56F8257 chip of the Freescale company as the core component, and introduces the characteristics of the control circuit and the design scheme of the control sequence. Finally, this paper has carried out a RT-LAB based on the control circuit. The hardware in the loop simulation platform construction and test verification, first of all, the RT-LAB real time simulator is briefly introduced. On this basis, the real-time simulation process of the photovoltaic simulation system in RT-LAB is studied. The real-time process of the Matlab off-line simulation model to the RT-LAB real-time simulation model is introduced in detail. Then, the research of the real time simulation model of the MPPT is studied. With the MPPT algorithm, an improved MPPT algorithm is used to design the hardware controller, and the digital main circuit is set up with the RT-LAB real-time simulation platform. The mixed real-time simulation verification is carried out. The control effect of the improved MPPT algorithm and the traditional MPPT algorithm is compared and analyzed, and the effectiveness and superiority of the improved control algorithm is verified. Finally, the inverter is obtained from the inverter. The control algorithm's physical angle is used to verify the control effect of the double closed loop control algorithm.

【学位授予单位】:东南大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TM615

【相似文献】

相关期刊论文 前10条

1 任淑红;吴晓燕;张庆波;;现代导弹半实物仿真技术探讨[J];飞航导弹;2006年05期

2 陈静;花瑞;宋炳生;;交叉口交通信号控制的半实物仿真平台设计[J];武汉理工大学学报(信息与管理工程版);2008年05期

3 罗凯;孙军亮;党建军;王育才;;水下热动力系统半实物仿真研究[J];鱼雷技术;2010年02期

4 黄建强;鞠建波;;半实物仿真技术研究现状及发展趋势[J];舰船电子工程;2011年07期

5 陆元章;王黎明;王钧功;;泵控马达负载反馈半实物仿真测试系统[J];上海交通大学学报;1986年06期

6 徐庚保;;捆绑型运载火箭姿态控制系统半实物仿真方法[J];航天控制;1990年02期

7 邹文军,杨敏;旋转导弹自旋误差对半实物仿真的影响[J];战术导弹技术;1991年01期

8 孟代奎;姜兰芳;李永鑫;;转台误差对旋转导弹半实物仿真的影响[J];航天控制;1992年03期

9 杨宏宁 ,刘鸿才;自旋导弹半实物仿真与交连[J];现代防御技术;1993年01期

10 丛敏,刘金;美国陆军导弹司令部的半实物仿真[J];飞航导弹;1998年06期

相关会议论文 前10条

1 张聚;谢碧锋;李敏;邹向琪;;一种新的半实物仿真方法及应用[A];Proceedings of the 2011 Chinese Control and Decision Conference(CCDC)[C];2011年

2 孟秀云;刘藻珍;王肇敏;魏华梁;;制导航弹半实物仿真系统误差分析与建模[A];加入WTO和中国科技与可持续发展——挑战与机遇、责任和对策(下册)[C];2002年

3 潘峰;薛定宇;陈大力;崔建江;;旋转倒立摆运动控制半实物仿真平台的设计与实现[A];Proceedings of 2010 Chinese Control and Decision Conference[C];2010年

4 夏也瑾;洪兴昌;董锡君;;多姿多彩的寻的导弹半实物仿真技术[A];二○○一年中国系统仿真学会学术年会论文集[C];2001年

5 周莉莉;李艳雷;唐成;;半实物仿真技术在飞行器研制中的应用[A];2014第二届中国指挥控制大会论文集(上)[C];2014年

6 杨志文;;线加速度传感器接入回路的制导系统半实物仿真[A];仿真计算机与软件、仿真方法与建模学术交流会论文集[C];2004年

7 周晓滨;方洋旺;许勇;;反辐射导弹制导系统半实物仿真软件框架设计[A];第四届中国软件工程大会论文集[C];2007年

8 李q,

本文编号:1837784


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1837784.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6a0b2***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com