添加剂处理电子传输层PCBM对钙钛矿太阳能电池性能的影响
发布时间:2018-05-04 17:19
本文选题:钙钛矿太阳能电池 + 电子传输层 ; 参考:《北京交通大学》2017年硕士论文
【摘要】:基于有机-无机复合钙钛矿材料的全新太阳能电池从2013年6月以来,引起了人们极大的关注,相关的研究工作被Science期刊评为2013年度国际十大科技进展之一,钙钛矿光伏器件的光电转换效率(power conversion efficiency PCE)在不到六年的发展时间里从3.8%大幅度提升到22.1%,其潜力难以估量。提高钙钛矿太阳能电池的光电转换效率始终是光伏器件研究与开发中不变的主题。有机无机复合钙钛矿材料被证明是非常出色的光伏材料,目前主要通过优化钙钛矿材料的结晶和形貌来提高钙钛矿太阳能电池效率。而对于电荷传输层,特别是p-i-n结构中电子传输层的研究相对较少。在钙钛矿太阳能电池中,电子传输层与吸收层的电子选择性接触对光电转化效率至关重要,在正置结构器件中影响更大,电子传输层的介观结构直接影响到钙钛矿生长情况。并且,电子传输层的传输电子的特性对电池性能有着至关重要的影响,还有化学性质及其界面也会影响到电池的稳定性和寿命。我们通过在电子传输层PCBM中加入添加剂聚苯乙烯(PS)和1,8-二碘辛烷(DIO)来处理电子传输层,改善了电子传输层的形貌和膜层的质量,达到了改善电荷传输特性的效果,提升了钙钛矿太阳能电池的效率。首先,我们制备了结构为ITO/PEDTO:PSS/CH3NH3PbI3/PCBM/Al的钙钛矿太阳能电池,通过改变添加剂的浓度来研究添加剂1,8-二碘辛烷(DIO)对光伏器件性能的影响。当单独加入的添加剂DIO浓度为2%时,得到的效果最好,开路电压提高到1.01 V,电流提高到16.32 mA·cm-2,效率提升为12.04%。DIO是最常见的添加剂,能很好地溶解PCBM,由于DIO的沸点为333 ℃,高于主体溶剂氯苯的沸点132℃,所以在PCBM结晶过程中挥发的缓慢,有利于提升PCBM的结晶质量,形成质量更高表面更平滑的膜层,进而提高其电子传输性能.添加剂DIO的加入改善了电子传输层的形貌,有利于电荷的分离、传输和收集,因而很好地提升了光电转化效率。聚苯乙烯(PS)常作为添加剂应用于有机太阳能电池活性层中,来提升溶液粘度和增加膜层厚度,提升薄膜的均匀性,也有研究组报道使用PS作为添加剂加入到钙钛矿太阳能电池中的电子传输层PCBM中,得到了更光滑更平整的PCBM膜层,有效的抑制了电池界面处电荷复合,所以我们使用PS作为第二种添加剂,和DIO 一起作为双添加剂处理电子传输层PCBM。双添加剂PS和DIO处理电子传输层,可以集合两者的优点,起到更好的效果,通过在电子传输层PCBM中添加聚苯乙烯(PS)和1,8-二碘辛烷(DIO),使得钙钛矿太阳能电池的光电转换效率(PCE)从10.8%提升到了12.5%,优于单添加剂处理的性能。本文研究表明,用成本较低的添加剂处理,可以改善电子传输层的形貌和膜层的质量,达到了改善电荷传输特性的效果,提升了钙钛矿太阳能电池的效率,为提升钙钛矿太阳能电池性能提供了一条可行的路径。
[Abstract]:Since June 2013, the new solar cells based on organic-inorganic composite perovskite materials have attracted great attention. The related research work has been rated as one of the top ten scientific and technological developments in the world in 2013 by Science periodicals. In less than six years, the photovoltaic conversion efficiency of perovskite photovoltaic devices has been greatly improved from 3.8% to 22.1%, and its potential is inestimable. Improving the photovoltaic conversion efficiency of perovskite solar cells is always the same topic in the research and development of photovoltaic devices. The organic-inorganic composite perovskite has been proved to be an excellent photovoltaic material. At present, the efficiency of perovskite solar cells can be improved by optimizing the crystallization and morphology of perovskite materials. However, there are few researches on charge transport layer, especially electron transport layer in p-i-n structure. In the perovskite solar cells, the electron selective contact between the electron transport layer and the absorption layer is very important to the photoelectric conversion efficiency, especially in the positive structure devices. The mesoscopic structure of the electron transport layer has a direct impact on the growth of perovskite. Moreover, the characteristics of the electron transport layer have an important effect on the performance of the battery, and the chemical properties and interface will also affect the stability and lifetime of the battery. We treat the electron transport layer by adding the additives polystyrene (PS) and diiodooctane (Dio) into the electron transport layer (PCBM). The morphology of the electron transport layer and the quality of the film layer are improved, and the effect of improving the charge transport characteristics is achieved. Improved the efficiency of perovskite solar cells. Firstly, we have prepared perovskite solar cells with ITO/PEDTO:PSS/CH3NH3PbI3/PCBM/Al structure. By changing the concentration of additives, we studied the effect of additive 1 / 8-diiodooctane (Dio) on the performance of photovoltaic devices. When the concentration of DIO added alone is 2, the effect is the best. The open circuit voltage is increased to 1.01 V, the current to 16.32 Ma cm-2, and the efficiency to 12.04%.DIO is the most common additive, which can dissolve the DIO very well, because the boiling point of DIO is 333 鈩,
本文编号:1843894
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1843894.html