风电机组变桨系统故障定位的方法研究
本文选题:风电机组 + 变桨系统 ; 参考:《华北电力大学(北京)》2017年硕士论文
【摘要】:世界石化能源危机的日趋明显,掀起了可再生能源发展的新潮流,风能作为其中的重要一类,发展迅速。截止到2015年年底,中国的累计装机容量为145.4GW,位于世界第一,占全球累计装机容量的33.6%。这意味着,有超过9万台的风机需要后续至少20年的维护工作,而在这一过程中,风电设备故障诊断将必不可少且非常重要。其中,变桨系统作为风机的功率调节与安全制动系统,常常随着风速的变化频繁变桨,工作环境恶劣,故障率居高不下。但现有对变桨系统故障诊断的研究文献较少,现场对风电机组变桨系统的检测与诊断多依赖于SCADA报警系统。然而,由于SCADA系统没有综合考虑变桨系统各子系统以及风机运行参数间存在的强耦合性,每当其检测到变桨系统故障时,总是出现一连串的报警信息,随机且无序,无法确认真正故障源,给故障停机后的维修造成较大的困难。本文针对SCADA系统连锁报警问题,基于风电场SCADA运行数据,将Fisher判别分析法引入到变桨系统故障诊断中,形成一种基于FDA贡献图的故障源分离方法。该方法通过计算出故障数据的偏离方向以及各变量相对于该方向偏离所做的贡献率,生成FDA贡献图,从而甄别出引起故障的主要参变量,实现故障源分离。并通过模拟数据和实例数据分别进行分析验证,结果表明该方法能够准确的识别出主要故障源,并能够据此实现进一步的故障定位,对后续的故障诊断和制定检修预案有着重要的指导作用。此外,本文从变桨系统的结构组成及其逻辑关系出发,绘制出变桨系统的结构拓扑图及其逻辑关系图;然后在此基础上,分析了变桨系统的故障特性,包括其分布特性、传递特性以及表现特性,并在故障传递特性中以主要的电源、控制信号及通讯信号三种信号为传递路径绘制出变桨系统各子系统及结构的线路传递图;最后,采用FMEA分析法对变桨系统的故障模式进行系统的分析,从变桨系统的各故障模式出发,通过变桨系统的结构拓扑,传递路径分析,寻找可能的故障原因从而实现故障定位,并形成包括变桨控制系统和执行机构在内的9张FMEA分析表。
[Abstract]:The world petrochemical energy crisis is becoming more and more obvious, which has set off a new trend of renewable energy development. Wind energy, as an important category, is developing rapidly. By the end of 2015, China's cumulative installed capacity was 145.4 GW, ranking first in the world and accounting for 33.6% of the world's cumulative installed capacity. This means that more than 90,000 fans will need to be maintained for at least another 20 years, and in the process, fault diagnosis of wind power equipment will be essential and important. As the power regulation and safety braking system of the fan, the variable propeller system often changes the propeller frequently with the change of the wind speed, the working environment is bad, the failure rate is high. However, there are few literatures on fault diagnosis of variable propeller system, and the detection and diagnosis of variable propeller system of wind turbine mostly depend on SCADA alarm system. However, since the SCADA system does not take into account the strong coupling between the various subsystems of the propeller system and the operational parameters of the fan, a series of alarm messages appear whenever the faults of the propeller system are detected, which is random and disordered. Unable to identify the true source of failure, causing greater difficulty in maintenance after failure. Aiming at the problem of chain alarm in SCADA system, based on the SCADA operation data of wind farm, this paper introduces Fisher discriminant analysis into fault diagnosis of propeller system, and forms a fault source separation method based on FDA contribution diagram. By calculating the deviation direction of the fault data and the contribution rate of each variable relative to this direction, the FDA contribution diagram is generated, and the main parameter variables caused by the fault are identified, and the fault source separation is realized. The results show that the method can identify the main fault sources accurately and realize the further fault location based on the simulation data and the example data. It plays an important role in fault diagnosis and maintenance plan. In addition, the structure topology diagram and its logic relation diagram of the variable propeller system are drawn from the structure composition and logic relation of the variable propeller system, and then the fault characteristics of the variable propeller system, including its distribution characteristics, are analyzed. Transmission characteristics and performance characteristics, and in the fault transmission characteristics of the main power supply, control signal and communication signal as the transmission path to draw out the pitch system subsystem and structure of the line transfer diagram; finally, The fault mode of the variable propeller system is analyzed systematically by using FMEA analysis method. Starting from the various fault modes of the variable propeller system, through the structural topology of the variable propeller system and the analysis of the transmission path, the possible fault causes can be found and the fault location can be realized. Nine FMEA analysis tables including propeller control system and actuator are formed.
【学位授予单位】:华北电力大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM315
【参考文献】
相关期刊论文 前10条
1 王绍铭;藏希萌;;永磁直驱MW级风电机组变桨逆变器故障解析[J];中小企业管理与科技(下旬刊);2016年04期
2 王绍铭;史家铭;;旋转编码器在M瓦级风机中的应用及常见故障[J];中小企业管理与科技(中旬刊);2016年04期
3 姚万业;李新丽;;基于状态监测的风电机组变桨系统故障诊断[J];可再生能源;2016年03期
4 郭慧东;王玮;夏明超;;基于数据挖掘的风电机组变桨系统劣化状态在线辨识方法[J];中国电机工程学报;2016年09期
5 王卫娜;甄冬;张琨;张磊;;基于SCADA数据分析的风机变桨故障诊断[J];自动化与仪表;2016年01期
6 咬登尚;苏小春;谢建成;;1.5MW风力发电机组变桨电机常见故障分析[J];低碳世界;2016年01期
7 秦洋;马慧民;朱田玮;;基于灰色马尔可夫模型的风机变桨系统故障预测[J];广东电力;2015年10期
8 李伟昌;张磊;;基于风力发电系统的风电机组变桨距故障诊断[J];计算机仿真;2015年09期
9 赵洪山;连莎莎;邵玲;;基于模型的风电机组变桨距系统故障检测[J];电网技术;2015年02期
10 尹诗;余忠源;孟凯峰;李闯;王其乐;;基于非线性状态估计的风电机组变桨控制系统故障识别[J];中国电机工程学报;2014年S1期
相关会议论文 前1条
1 柯剑;孟祥瑞;李皎;;滑环故障分析及优化方案浅析[A];第三届中国风电后市场专题研讨会论文集[C];2016年
相关博士学位论文 前2条
1 牛征;基于多元统计分析的火电厂控制系统故障诊断研究[D];华北电力大学(河北);2006年
2 黄孝彬;火电厂控制系统故障检测与诊断的研究[D];华北电力大学(河北);2004年
相关硕士学位论文 前1条
1 李学伟;基于数据挖掘的风电机组状态预测及变桨系统异常识别[D];重庆大学;2012年
,本文编号:1863723
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1863723.html