智能中频感应加热电源的研究与设计
本文选题:感应加热 + 串联谐振 ; 参考:《电子科技大学》2017年硕士论文
【摘要】:在现代工业加热中,电磁感应加热一直是工件热处理的核心技术,故而成为该研究领域的重点。感应加热电源凭借其节能高效、安全稳定可靠等特点,成为工业加热的主要方式。随着国家对节能环保的大力提倡,感应加热电源因其节能无污染等优点被广泛应用,向着高可靠性低成本、高频率智能化等方向不断发展,对电路结构与控制方式、开发周期等提出了新的需求,本文对感应加热电源进行了研究与设计,主要工作如下:1.分析比较了各种主电路结构与调功方式,选择合适的方案并设计了主电路。选用了串联谐振电路结构与移相调功方式,根据主电路特点对其参数进行了分析与计算,选取了合适的元器件,根据逆变电路特点,选取了合适的驱动芯片IR2110并设计了驱动电路,分析了阻抗匹配,对电磁干扰抑制与谐波防止进行了总结。2.设计了移相调功与锁相环复合的硬件控制电路。对移相调功电路、频率跟踪电路、相位补偿、采样电路、闭环控制进行了分析与设计,为之后与软件的协同控制提供了条件,并设计了保护电路,包括过压过流保护电路,保证系统在出现异常时保护整个系统。3.对系统的软件控制与触摸显示进行了设计。分析了传统PI与数字PI控制,并对数字PI控制进行了改进,设计出适用于本文的分离PI-P算法,保证了调节速度与精度,实现了智能控制,设计了采样程序并为系统加入了软件保护,可与硬件保护协同工作,对触摸显示屏进行了设计,使其拥有友好的人机界面,操作更加便捷。4.对系统进行了仿真验证与调试测试。对电源系统进行了搭建与仿真,验证了方案正确性与合理性,并为调试与测试奠定了基础,对感应电源系统进行了调试,分别测试了移相波形,死区波形,负载电压和电流波形,对波形进行了分析与总结,同时对调试过程中遇到的问题进行了总结,并记录了测试数据,验证整个系统满足设计要求。
[Abstract]:In modern industrial heating, electromagnetic induction heating has been the core technology of workpiece heat treatment, so it has become the focus of this research field. Induction heating power supply has become the main way of industrial heating because of its characteristics of energy saving, high efficiency, safety, stability and reliability. With the great promotion of energy saving and environmental protection in our country, induction heating power supply has been widely used for its advantages of energy saving and no pollution. It has been developing in the direction of high reliability and low cost, high frequency intelligence and so on. In this paper, the induction heating power supply is studied and designed. The main work is as follows: 1: 1. The main circuit structure and power regulation mode are analyzed and compared, the suitable scheme is selected and the main circuit is designed. The series resonant circuit structure and phase-shift power modulation mode are selected. The parameters are analyzed and calculated according to the characteristics of the main circuit, and the appropriate components are selected, according to the characteristics of the inverter circuit, The suitable driver chip IR2110 is selected and the driving circuit is designed. The impedance matching is analyzed and the electromagnetic interference suppression and harmonic prevention are summarized. The hardware control circuit of phase-shifting and phase-locked loop is designed. The phase shift power modulation circuit, frequency tracking circuit, phase compensation, sampling circuit and closed loop control are analyzed and designed, which provides the conditions for the subsequent collaborative control with the software, and designs the protection circuit, including the over-voltage and over-current protection circuit. To ensure that the system in case of an exception to protect the entire system. 3. The software control and touch display of the system are designed. The traditional Pi and digital Pi control are analyzed, and the digital Pi control is improved. A separate PI-P algorithm suitable for this paper is designed, which ensures the speed and precision of the adjustment, and realizes the intelligent control. The sampling program is designed and software protection is added to the system, which can work together with hardware protection. The touch display screen is designed to have a friendly man-machine interface, and the operation is more convenient. 4. The system is simulated and tested. The power supply system is built and simulated, which verifies the correctness and rationality of the scheme, and lays the foundation for debugging and testing. The phase shift waveform and dead zone waveform are tested respectively. The waveform of load voltage and current is analyzed and summarized. At the same time, the problems encountered in debugging are summarized, and the test data are recorded to verify that the whole system meets the design requirements.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN86
【参考文献】
相关期刊论文 前10条
1 李阳;张雅希;闫卓;杨庆新;薛明;张献;;磁耦合谐振式无线电能传输系统阻抗分析与匹配电路设计方法[J];电工技术学报;2016年22期
2 郑涛;魏旭辉;李娟;李菁;王燕萍;杨国生;王增平;李霞;;PI控制参数对双馈风电机组短路电流特性的影响分析[J];电力自动化设备;2016年07期
3 王颖丽;杨霞;;电力电子装置的电磁干扰[J];技术与市场;2016年04期
4 齐丽丽;;触摸显示屏专利技术综述[J];企业技术开发;2016年09期
5 郑诗程;徐礼萍;郎佳红;方四安;;基于重复PI控制和前馈控制的静止无功发生器[J];电工技术学报;2016年06期
6 高发亮;张宝杰;;感应加热电源关键技术研究[J];电源世界;2016年02期
7 刘牮;布晓萌;雷龙;付橙;;一种IGBT全桥逆变驱动电路的设计[J];信息技术;2014年10期
8 范立荣;张凯强;;一种适合中频感应加热电源的IGBT驱动技术[J];微型机与应用;2014年08期
9 杜艳;孙振亮;李玲芬;林占伟;;针对中频感应加热装置的电气设计[J];中小企业管理与科技(下旬刊);2014年04期
10 肖启明;杨明;刘可述;贾下跖;秦洁;;PMSM伺服系统速度环PI控制器参数自整定及优化[J];电机与控制学报;2014年02期
相关硕士学位论文 前10条
1 杨丹;考虑寄生参数的射频天线阻抗匹配[D];湖南大学;2016年
2 董明承;电动汽车电机驱动系统功率回路电磁干扰及抑制研究[D];北京理工大学;2015年
3 谢鹏飞;基于DSP和FPGA的中频感应加热电源的研究[D];北京工业大学;2014年
4 马洪飞;基于IGBT的并联谐振感应加热电源的研究[D];北京交通大学;2014年
5 刘畅;双闭环控制IGBT感应加热电源的研究[D];大连理工大学;2013年
6 梁靖;基于同频同相输出解耦控制的感应加热电源组研究与设计[D];电子科技大学;2013年
7 龚庆祝;真空镀膜感应加热电源研究与设计[D];电子科技大学;2012年
8 孙娟;基于DSP的IGBT感应加热电源的研究[D];大连理工大学;2011年
9 乔攀科;中频感应加热在注塑机加热系统中的应用研究[D];华南理工大学;2011年
10 齐海润;串联型IGBT感应加热电源的控制技术研究[D];华北电力大学;2011年
,本文编号:1885670
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1885670.html