当前位置:主页 > 科技论文 > 电气论文 >

风力发电机组故障特征分析与诊断方法研究

发布时间:2018-05-14 07:38

  本文选题:风电机组 + 故障特征 ; 参考:《华北电力大学》2017年硕士论文


【摘要】:目前,风力发电越来越受到全球各国的重视,随着风电机组的逐年投运,机组也逐步进入事故高发阶段。风力发电机组故障诊断能够有效减少重大事故的发生,而且可实时监测风力发电机组的运行状态,识别其异常情况,降低运行成本,保障机组安全高效运行。因此,风力发电机组的系统监测与故障诊断已经成为风电发展中的重要研究方向。针对风力发电机组故障频发的现象,本文在深入分析风电场SCADA数据的基础上,对机组的整体运行状态作了评估,并且对其故障率较高的部位—发电机与齿轮箱,作了进一步的分析与故障诊断设计。主要内容如下:(1)介绍了风力发电机组的工作原理与结构组成,针对风电机组的运行特性,分析了机组的故障机理,并对机组故障易发部位及故障诊断常用方法进行研究,提出针对不同信号源的故障诊断方法,进而设计了本文故障诊断及状态监测方法。(2)运用模糊综合评判的方法,由某风电场SCADA系统选取出某个时刻机组的运行数据,对风电机组建立模糊综合评判模型,按照所建立的模型,对机组的运行状态进行划分,本文将机组运行状态划分为“优、良、中、差”四个等级,当机组工作在“差”状态时,表明机组运行已经出现故障,需要立即停机进行检查,避免故障严重化,造成更大的损失。(3)风力发电机组出现故障时,需要对机组的各个子系统进行故障诊断。本文采用非线性状态评估方法,对机组的发电机和齿轮箱分别进行建模与预警,通过设置温度偏移来模拟故障发生,进而验证了非线性状态评估方法对发电机与齿轮箱故障诊断与状态监测的可行性,为风电机组的故障诊断与状态监测提供了新的思路和参考。(4)风力发电机组的子系统出现故障时会对机组造成一定的影响,本文通过分析发电机或齿轮箱出现故障时对机组输出功率的影响,说明了风电机组故障的相互关联性,并且通过对影响的进一步分析,得出了发电机侧故障对机组的影响大于齿轮箱侧的结果,为风电机组排除故障提供了一定的参考。
[Abstract]:At present, wind power generation is paid more and more attention by the countries all over the world. With the wind turbine running year by year, the wind turbine has gradually entered the stage of high accident rate. The fault diagnosis of wind turbine can effectively reduce the occurrence of serious accidents, and can monitor the operating state of wind turbine in real time, identify its abnormal situation, reduce the operating cost and ensure the safe and efficient operation of wind turbine. Therefore, wind turbine system monitoring and fault diagnosis has become an important research direction in wind power development. In this paper, based on the analysis of wind farm SCADA data, the overall operating state of wind turbine generator is evaluated, and the high failure rate of generator and gearbox is discussed. Further analysis and fault diagnosis design are made. The main contents are as follows: (1) the working principle and structure of wind turbine are introduced. According to the operating characteristics of wind turbine, the fault mechanism of wind turbine is analyzed, and the fault prone parts and common methods of fault diagnosis are studied. This paper presents a fault diagnosis method for different signal sources, and then designs the method of fault diagnosis and condition monitoring in this paper. By using the method of fuzzy comprehensive evaluation, the operation data of the unit at a certain time are selected from the SCADA system of a wind farm. The fuzzy comprehensive evaluation model of wind turbine is established. According to the established model, the operating state of the unit is divided into four grades: "excellent, good, medium and bad". When the unit is working in a "bad" state, the operating state of the unit is divided into four grades: "excellent, good, medium and bad". It shows that the operation of the unit has already appeared the fault, it is necessary to stop immediately to check, avoid the fault serious, cause bigger loss. 3) when the wind turbine has the fault, need to carry on the fault diagnosis to each subsystem of the unit. In this paper, the nonlinear state evaluation method is used to model and warn the generator and gearbox respectively, and the fault is simulated by setting temperature offset. Furthermore, the feasibility of nonlinear state evaluation method for fault diagnosis and condition monitoring of generator and gearbox is verified. It provides a new way of thinking and reference for wind turbine fault diagnosis and condition monitoring. By analyzing the influence of generator or gearbox failure on the output power of the unit, this paper explains the interrelation of the wind turbine fault, and through the further analysis of the influence, It is concluded that the effect of generator side fault is greater than that of gearbox side, which provides a certain reference for wind turbine troubleshooting.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM315

【参考文献】

相关期刊论文 前10条

1 ;风电提前实现“十二五”装机目标 弃风现象深度反弹,产业顽疾如何破局[J];玻璃钢/复合材料;2015年05期

2 ;2014年中国风电装机容量统计[J];风能;2015年02期

3 肖运启;王昆朋;贺贯举;孙燕平;杨锡运;;基于趋势预测的大型风电机组运行状态模糊综合评价[J];中国电机工程学报;2014年13期

4 孙建平;朱雯;翟永杰;葛建宏;;基于MSET方法的风电机组齿轮箱预警仿真研究[J];系统仿真学报;2013年12期

5 刘鑫沛;翟永杰;张君颖;;基于聚类分析和状态估计的制粉系统故障预警[J];计算机仿真;2013年08期

6 董玉亮;李亚琼;曹海斌;何成兵;顾煜炯;;基于运行工况辨识的风电机组健康状态实时评价方法[J];中国电机工程学报;2013年11期

7 董昱廷;王海云;唐新安;;风电机组状态监测系统现状[J];电机与控制应用;2013年04期

8 张传标;倪建军;刘明华;马华伟;;样本优化核主元分析及其在水质监测中的应用[J];中国环境监测;2012年02期

9 郭鹏;David Infield;杨锡运;;风电机组齿轮箱温度趋势状态监测及分析方法[J];中国电机工程学报;2011年32期

10 李辉;胡姚刚;杨超;李学伟;唐显虎;;并网风电机组运行状态的物元评估方法[J];电力系统自动化;2011年06期

相关硕士学位论文 前7条

1 杨明莉;大型风电机组故障诊断研究[D];上海电机学院;2015年

2 任杰;大型风电机组运行状态评价与分析[D];华北电力大学;2014年

3 房宁;基于主元分析类方法的风电机组部件建模分析与监测研究[D];华北电力大学;2014年

4 梁颖;基于SCADA系统的大型风电机组在线状态评估及故障定位研究[D];华侨大学;2013年

5 白楠;基于概率统计的非参数模型状态监测[D];华北电力大学;2013年

6 胡姚刚;并网风力发电机组的运行状态评估[D];重庆大学;2011年

7 宋磊;风电机组故障测试与统计分析[D];华北电力大学(北京);2010年



本文编号:1886973

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1886973.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户7d03c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com