基于多信息融合的电网故障诊断方法研究
本文选题:电网故障诊断 + Petri网 ; 参考:《南京理工大学》2017年硕士论文
【摘要】:随着电网的规模不断扩大,不同区域间的互联越来越紧密,当电网发生故障时,故障对系统的影响将越来越大。现有电网故障诊断方法多是基于断路器跳闸、保护动作等开关量信息。然而,这种利用某种智能算法对开关量进行处理得到故障诊断结果的方式,对断路器与保护信息的完整性与准确性具有很高的要求,不同程度的完整性与准确性对诊断结果具有很大影响。.本文研究了利用多数据源信息进行电网故障诊断的方法。首先介绍了课题的研究背景以及国内外的发展现状;其次,介绍了目前电网故障诊断的各种故障信息源;接下来本文对基于开关量信息的电网故障诊断进行分析,针对现有Petri网诊断模型的网络适应性与不确定信息容错性问题,提出时序加权模糊有色Petri网电网故障诊断模型;同时,本文对基于电气量信息的电网故障诊断进行分析,针对HHT对故障电流分析时出现的过包络与欠包络现象,提出一种改进的经验模态分解方式,从而改进HHT得到更为准确的诊断结果;在上述方法的基础上,本文提出基于D-S证据理论的电网故障诊断融合模型和基于改进C均值算法的诊断决策模型;最后,基于Matlab仿真分析软件,通过综合算例仿真分析来验证本文所提出方法的有效性。
[Abstract]:With the continuous expansion of the scale of the power grid, the interconnection between different regions is becoming more and more close. When the power network fails, the influence of the fault on the system will become more and more serious. Most of the existing fault diagnosis methods are based on switching information such as circuit breaker tripping, protection operation and so on. However, the method of using some intelligent algorithm to process the switch quantity to get the fault diagnosis result has high requirements for the integrity and accuracy of the information of circuit breaker and protection. Different degrees of completeness and accuracy have great influence on the diagnosis results. In this paper, the method of fault diagnosis based on multiple data sources is studied. Firstly, it introduces the research background and the development status at home and abroad; secondly, it introduces the various fault information sources of current power network fault diagnosis; then, this paper analyzes the power network fault diagnosis based on switch quantity information. Aiming at the problem of network adaptability and fault tolerance of uncertain information in existing Petri net diagnosis model, a time-series weighted fuzzy colored Petri net fault diagnosis model is proposed, and the fault diagnosis model based on electrical information is analyzed in this paper. An improved empirical mode decomposition (EMD) method is proposed to solve the overenvelope and underenvelope phenomena in the fault current analysis of HHT, which improves the HHT to get more accurate diagnosis results. In this paper, a fault diagnosis fusion model based on D-S evidence theory and a diagnosis decision model based on improved C-means algorithm are proposed. The effectiveness of the proposed method is verified by a comprehensive example.
【学位授予单位】:南京理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM711
【参考文献】
相关期刊论文 前10条
1 盛华;张桂珠;;一种融合K-means和快速密度峰值搜索算法的聚类方法[J];计算机应用与软件;2016年10期
2 钟锦源;张岩;文福拴;杨明;张小易;朱海兵;;利用电气量和时序信息的改进Petri网故障诊断模型[J];电力系统自动化;2015年11期
3 徐岩;张锐;卫波;;应用数据融合的电网故障诊断[J];电力系统及其自动化学报;2014年11期
4 李乃永;梁军;李磊;林霞;;基于广域故障录波信息的调度端电网故障诊断系统[J];电力系统自动化;2014年16期
5 张岩;张勇;文福拴;李继红;;容纳时序约束的改进模糊Petri网故障诊断模型[J];电力系统自动化;2014年05期
6 熊国江;石东源;朱林;陈祥文;;基于径向基函数神经网络的电网模糊元胞故障诊断[J];电力系统自动化;2014年05期
7 孙明蔚;童晓阳;刘新宇;甄威;王晓茹;;运用时序贝叶斯知识库的电网故障诊断方法[J];电网技术;2014年03期
8 黄树培;郑红婵;闫飞一;胡韵;;3点Binary插值细分法的性质以及应用[J];图学学报;2014年01期
9 张岩;张勇;文福拴;孙维真;王超;;融合信息理论的电力系统故障诊断解析模型[J];电力自动化设备;2014年02期
10 吴文可;文福拴;薛禹胜;周华锋;李晓露;;基于多源信息的延时约束加权模糊Petri网故障诊断模型[J];电力系统自动化;2013年24期
,本文编号:1892413
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1892413.html