非晶合金永磁电机电磁振动噪声研究
本文选题:非晶合金永磁电机 + 振动噪声 ; 参考:《沈阳工业大学》2017年博士论文
【摘要】:非晶合金材料具有低损耗的优异性能,将其应用于电机能显著减小电机铁耗,提高电机效率,非晶合金永磁电机是电机领域具有良好前景的新型电机。但非晶合金材料存在刚度低、磁致伸缩系数较大、铁心叠压系数低的缺陷,由此将引起非晶合金永磁电机振动噪声显著加大。本文针对非晶合金永磁电机电磁振动噪声展开深入的研究,主要研究工作包括以下几个方面:第一部分建立磁致伸缩引起的电机定子铁心振动解析模型。磁致伸缩是引起非晶合金永磁电机振动的主要原因之一。根据径向磁通和轴向磁通电机的磁路结构,基于压磁方程和牛顿定律分别建立磁致伸缩引起的两种结构电机定子铁心振动解析模型。利用解析模型确定各物理量之间的关系,得出:磁致伸缩引起的电机定子铁心振动与磁致伸缩系数成正比,定子铁心振动位移与轭部圆环半径、齿高近似呈线性关系,弹性模量对磁致伸缩引起的电机定子铁心振动影响很小。当电机固有频率远离供电频率时,供电频率对定子铁心振动位移影响很小;定子铁心振动速度与供电频率成正比;定子铁心振动加速度与供电频率的平方成正比。对解析模型进行编程,形成计算软件。对定子铁心轭部振动简化模型和精确模型的适用性进行分析,得出简化模型可以准确的计算出定子铁心轭部的平均振动,精确模型可以计算出定子铁心轭部振动的分布特性。通过解析计算值、有限元计算值和实验测试值的对比,验证了解析模型的准确性。最后,利用解析模型分析得出电机定子铁心振动位移和应力的分布特性。第二部分对非晶合金电机电磁振动噪声数值计算方法进行研究。提出一种综合考虑电磁力、磁致伸缩效应和叠片压紧力的电机电磁振动噪声数值计算方法。叠片压紧力对电机振动噪声的影响通过两个方面来考虑:一方面,叠片压紧力对铁心磁性能(磁致伸缩和磁化特性)产生影响;另一方面,叠片压紧力对铁心力学性能(杨氏模量和剪切模量)产生影响。实验测试非晶合金磁致伸缩特性曲线以及叠压、卷绕铁心磁化特性曲线,同时利用非晶合金叠压和卷绕定子铁心模态实验对非晶合金弹性模量进行修正。利用该计算方法对一台2.1kW径向磁通非晶合金永磁电机和一台7kW轴向磁通非晶合金永磁电机电磁振动噪声进行计算,同时对电磁力单独作用、电磁力和磁致伸缩共同作用情况下电机电磁振动噪声进行计算,将三种情况下电机噪声计算值与实验测试值进行对比,证明了本文提出的计算方法提高了电机振动噪声计算精度。第三部分对非晶合金铁心振动噪声的影响因素进行研究。非晶合金铁心的性能参数(弹性模量、磁致伸缩特性和磁化特性)与加工工艺(叠压和卷绕、退火和浸漆)有关,并且不同加工工艺影响很大,由此可见加工工艺影响非晶合金铁心振动噪声。同时磁通密度和频率直接影响非晶合金铁心的振动噪声。本文搭建测试平台,制作不同加工工艺非晶合金铁心样品,对不同磁通密度和频率下铁心样品的振动噪声进行测试,研究磁通密度、频率以及不同加工工艺对非晶合金铁心振动噪声的影响规律。得出:不同磁通密度和频率下叠压铁心振动比卷绕铁心小8.0-12.7%;叠压铁心噪声随磁通密度和频率增加幅度均比卷绕铁心小;浸漆比未浸漆非晶合金铁心振动减小12.9-31.3%,噪声减小1.9%-4.5%;退火比未退火非晶合金铁心振动减小37.8-63.7%,噪声减小4.7-7.8%;在高频和高磁密时,退火和浸漆对非晶合金铁心振动噪声的影响变小。采用非晶合金叠压铁心、对铁心进行退火和浸漆处理可以减小非晶合金永磁电机振动噪声。第四部分对电机振动噪声的影响因素进行研究。不同铁心材料的弹性模量差别很大。同时不同铁心材料的磁致伸缩系数相差很大,并且压应力对磁致伸缩系数影响很大,当压应力超过一定限值时磁致伸缩系数将急剧增大。另外,采用不同材料和不同加工工艺制作的铁心叠压系数不同。研究定子铁心材料杨氏模量、磁致伸缩系数和叠片压紧力对电机电磁振动噪声的影响,得出:电机电磁振动与杨氏模量近似成反比,杨氏模量越大,磁致伸缩效应对电机振动噪声影响越大;磁致伸缩系数越大,磁致伸缩效应对电机振动噪声影响越大;叠片压紧力对非晶合金电机振动噪声的影响比硅钢片电机大,叠片压紧力对轴向磁通电机振动噪声的影响比径向磁通电机大。对相同规格的2.1kW径向磁通非晶合金和硅钢片永磁电机以及7kW轴向磁通非晶合金和硅钢片永磁电机振动噪声进行计算和测试,确定磁致伸缩效应和叠片压紧力对两种结构非晶合金和硅钢片电机振动噪声的影响,同时确定非晶合金和硅钢片永磁电机振动噪声存在的差异及产生差异的原因。二者产生差异的主要原因为非晶合金材料弹性模量低,其次为铁心叠压系数较低和磁致伸缩系数较大。
[Abstract]:Amorphous alloy materials have excellent properties of low loss, which can significantly reduce motor iron consumption and improve motor efficiency. Amorphous alloy permanent magnet motor is a new type of motor with good prospects in the field of motor. However, the defects of low stiffness, large magnetostrictive coefficient and low superposition coefficient of iron core are caused by amorphous alloy materials. The vibration noise of amorphous alloy permanent magnet motor is greatly increased. In this paper, the electromagnetic vibration noise of amorphous alloy permanent magnet motor is researched deeply. The main research work includes the following aspects: the first part is to establish the analytical model of the stator core vibration of the motor caused by magnetostrictive. One of the main reasons is that based on the magnetic circuit structure of the radial flux and the axial flux motor, based on the piezomagnetic equation and Newton's law, the analytical model of the stator core vibration of two structural motors caused by magnetostriction is established respectively. The relationship between the physical quantities is determined by the analytical model, and the vibration and magnetism of the stator core of the motor caused by magnetostriction are obtained. There is a linear relationship between the vibration displacement of the stator core and the radius of the yoke and the height of the tooth. The elastic modulus has little effect on the stator core vibration caused by magnetostriction. When the natural frequency of the motor is far away from the power supply frequency, the power supply frequency has little effect on the dynamic displacement of the stator Tie Xinzhen; the stator core vibration velocity and supply are very small. The vibration acceleration of the stator core is proportional to the square of the frequency of the power supply. The analytical model is programmed to form the calculation software. The applicability of the simplified model and the accurate model of the stator core yoke vibration is analyzed, and the simplified model can accurately calculate the average vibration of the stator core yoke, and the exact model can be obtained. The distribution characteristics of the vibration of the stator core yoke are calculated. The accuracy of the analytical model is verified by the analysis of the calculated values and the comparison between the calculated values of the finite element and the experimental test values. Finally, the distribution characteristics of the vibration displacement and stress of the stator core of the motor are obtained by the analytical model. The second part is on the electromagnetic vibration noise of the amorphous alloy motor. A numerical method for calculating the electromagnetic vibration and noise of a motor which takes into account the electromagnetic force, magnetostrictive effect and laminated compression force is presented. The influence of the laminated compression force on the vibration and noise of the motor is considered in two aspects: on the one hand, the magnetic properties of the core (magnetostrictive and magnetization) are produced by the laminated compression force. On the other hand, the influence of the laminated compression force on the mechanical properties of the core (Young's modulus and shear modulus). The magnetostrictive characteristic curve of the amorphous alloy and the magnetization curve of the coiling iron core are tested experimentally, and the elastic modulus of the amorphous alloy is corrected by using the amorphous alloy superposition and winding stator core model experiments. The calculation method is used to calculate the electromagnetic vibration noise of a 2.1kW radial flux amorphous alloy permanent magnet motor and a 7kW axial flux amorphous alloy permanent magnet motor. The electromagnetic vibration noise of the motor under the joint action of electromagnetic force and magnetostrictive force is calculated at the same time. The calculation value of the motor noise in three cases is calculated. The comparison of experimental test values shows that the calculation method proposed in this paper improves the accuracy of calculating the vibration and noise of the motor. Third the factors affecting the vibration noise of amorphous alloy core are studied. The performance parameters of the amorphous alloy core (elastic modulus, magnetostrictive and magnetostriction characteristics) and processing technology (superposition and winding, annealing, and annealing) are studied. It can be seen that the processing technology affects the vibration and noise of the amorphous alloy iron core. At the same time, the magnetic flux density and frequency directly affect the vibration and noise of the amorphous alloy iron core. In this paper, a test platform is set up to make the amorphous alloy iron core samples of different processing technology, and to the core of different flux density and frequency. The vibration noise of the sample is tested, and the influence of magnetic flux density, frequency and different processing technology on the vibration and noise of amorphous alloy iron core is studied. It is concluded that the vibration of the superimposed core is smaller than that of the winding core at different magnetic flux density and frequency, and the increase of the noise with the flux density and frequency is smaller than that of the winding core, and the lacquer is impregnated with different magnetic flux density and frequency. The vibration of the iron core of the amorphous alloy decreased by 12.9-31.3% and 1.9%-4.5%, and the vibration decreased by 37.8-63.7%, and the noise decreased by 4.7-7.8% than that of the unannealed amorphous alloy. At high frequency and high magnetic density, the effect of annealing and lacquer on the vibration and noise of amorphous alloy iron core was smaller. The vibration and noise of the amorphous alloy permanent magnet motor can be reduced by the dip coating treatment. The fourth part studies the influence factors of the vibration and noise of the motor. The elastic modulus of different iron core materials is very different. At the same time, the magnetostrictive coefficient of different core materials is very different, and the pressure stress has great influence on the magnetic extension coefficient, when the pressure stress is more than certain. The coefficient of magnetostrictive coefficient will increase sharply at the limit. In addition, the superposition coefficient of the core made of different materials and different processing techniques is different. The influence of the young's modulus, magnetostrictive coefficient and laminated compression force on the electromagnetic vibration and noise of the motor is studied. It is concluded that the electromagnetic vibration of the motor is inversely proportional to the young's modulus, Yang Shimo The larger the quantity, the greater the effect of magnetostrictive effect on the vibration and noise of the motor, the greater the magnetostrictive coefficient, the greater the effect of magnetostrictive effect on the vibration and noise of the motor; the influence of the laminated compression force on the vibration and noise of the amorphous alloy motor is larger than that of the silicon steel sheet motor, and the influence of the laminated compression force on the vibration and noise of the axial magnetic motor is larger than that of the radial flux motor. The vibration noise of 2.1kW radial flux amorphous alloy and silicon steel sheet permanent magnet motor, 7kW axial magnetic flux amorphous alloy and silicon steel sheet permanent magnet motor is tested and tested to determine the effect of magnetostrictive effect and laminated compression force on the vibration noise of two structure amorphous alloy and silicon steel sheet motor, and the amorphous alloy and the amorphous alloy are determined at the same time. The difference between the vibration and noise of the silicon steel sheet permanent magnet motor and the reasons for the difference are the main reasons for the difference between the two reasons are the low modulus of the amorphous alloy material, the lower the core superposition coefficient and the larger magnetostrictive coefficient.
【学位授予单位】:沈阳工业大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TM351
【相似文献】
相关期刊论文 前10条
1 张广强;周少雄;李山红;王立军;卢志超;;一种电机用非晶合金铁心的制备及其磁性能研究[J];微特电机;2011年12期
2 周晓华;;三相35千伏安浇注式非晶合金铁心变压器[J];变压器;1983年09期
3 ;非晶合金铁心变压器研制动态[J];变压器;1984年03期
4 ;非晶合金铁心变压器的研制动向[J];变压器;1985年07期
5 曹兴国;国外非晶合金发展概况[J];机械工程材料;1985年02期
6 杨宝龙;;一毫米厚的非晶合金[J];中小型电机;1985年06期
7 ;非晶合金叠铁心变压器[J];变压器;1986年10期
8 王爱共;;非晶合金的叠片[J];变压器;1986年11期
9 ;美国非晶合金铁心变压器研制动态[J];变压器;1992年05期
10 徐泽玮;非晶合金铁心变压器开发现状和应用前景[J];电工技术杂志;1992年04期
相关会议论文 前10条
1 孙兵兵;王艳波;文军;杨海;隋曼龄;;电镜样品制备方法对非晶合金结构的影响[A];2006年全国电子显微学会议论文集[C];2006年
2 孙笠;崔振江;宋启洪;王景唐;;用于多相催化的非晶合金催化剂[A];首届中国功能材料及其应用学术会议论文集[C];1992年
3 陈艳;蒋敏强;魏宇杰;戴兰宏;;基于原子结构及相互作用势的非晶合金断裂准则[A];第十二届全国物理力学学术会议论文摘要集[C];2012年
4 肖勋;张春华;;硅钢与非晶合金使用情况的比较以及材料的改善建议[A];2010第11届中国电工钢专业学术年会论文集[C];2010年
5 房卫萍;杨凯珍;张宇鹏;刘凤美;刘正林;刘师田;易江龙;许磊;;低碳经济下的非晶合金发展与应用[A];低碳技术与材料产业发展研讨会论文集[C];2010年
6 沈宁福;张国胜;王西科;杨占胜;;大比表面积非晶合金催化材料的研究[A];2000年材料科学与工程新进展(下)——2000年中国材料研讨会论文集[C];2000年
7 卢志超;李德仁;周少雄;;非晶合金丝的制备及巨磁阻抗效应的应用[A];2000年材料科学与工程新进展(下)——2000年中国材料研讨会论文集[C];2000年
8 邢力谦;;非晶合金的应用及进一步研究[A];科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集[C];2004年
9 郭文全;王景唐;;描述非晶合金粘度与其熔体粘度关系的公式[A];首届中国功能材料及其应用学术会议论文集[C];1992年
10 冯翔;杨玉英;江道祥;;非晶合金材料行业产业化发展初探[A];2011年安徽省科协年会——机械工程分年会论文集[C];2011年
相关重要报纸文章 前10条
1 谢斌 王琳;非晶合金产品前景看好[N];中国电力报;2007年
2 谢斌 王琳;顺特电气:推广非晶合金产品[N];中国电力报;2007年
3 本报记者 倪e,
本文编号:1941120
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1941120.html