新能源发电系统中混合储能系统优化控制的研究
本文选题:混合储能 + 双向DC/AC变换器 ; 参考:《东北电力大学》2017年硕士论文
【摘要】:随着经济的快速发展,能源的问题让人们越来越重视起来。非可再生能源不断的短缺,环境污染越来越严重,这些都让以风能和太阳能为代表的清洁可再生能源变成了大家关注的焦点。由于受到环境的影响比较大,风能和太阳能的波动性和不确定性一直都是其发展阶段的重要难题。储能装置的大力发展和研究逐渐成为了解决新能源发电并网的重要手段之一。单一的储能元件已经不能满足装机量不断增长的新能源发电系统,以高能量密度和高功率密度相结合的混合储能系统被认为是解决此问题的有效方法,国内外学者都展开了大量的研究和实验。本文所研究的主要内容就是新能源发电系统中混合储能系统的控制策略及容量的优化配置。本文对各储能元件的性能进行了详细的对比和分析,分别介绍了几种混合储能装置的拓扑结构,确定了由超级电容器和蓄电池通过双向DC/AC变换器接入交流母线的混合储能系统结构。针对风电和光伏并网发电系统的功率波动问题,研究了一种基于双向DC/AC变换器的混合储能系统动态控制策略。对含有超级电容器与蓄电池组的混合储能系统,建立了双闭环控制器结构,分别对变换器内部的电压电流进行控制,把波动变化较快的电流分量分配给超级电容器,并且让蓄电池来响应波动变化较慢的电流分量。通过基于扩展卡尔曼滤波方法对蓄电池的荷电状态进行控制,使其荷电状态值稳定在安全范围内,以此来达到延长了蓄电池的使用寿命的目的。通过Matlab仿真实验,验证了该混合储能控制方法的有效性。利用超级电容器和蓄电池优良的互补性,研究了一种针对风光互补发电系统中混合储能系统的容量优化配置,并详细分析了该系统负荷缺电率的计算流程;以全生命周期费用理论为基础和依据,建立混合储能的容量优化目标函数,并以新能源发电系统负荷缺电率等可靠性指标作为优化问题的约束条件;分别应用标准的和改进的粒子群算法进行优化求解。在Matlab仿真软件中,通过算例分析验证了该容量优化配置能够在满足供电可靠性的同时,能够有效地降低混合储能系统成本。
[Abstract]:With the rapid development of economy, people pay more and more attention to the problem of energy. The continuous shortage of non-renewable energy sources and the increasing environmental pollution have made clean and renewable energy, such as wind and solar energy, the focus of attention. The fluctuation and uncertainty of wind energy and solar energy are the important problems in the development stage of wind energy and solar energy because of the great influence of environment. The development and research of energy storage equipment has gradually become one of the important means to solve the problem of grid connection of new energy generation. A single energy storage element can no longer meet the new energy generation system with increasing installed capacity. The hybrid energy storage system with high energy density and high power density is considered to be an effective method to solve this problem. Scholars at home and abroad have carried out a lot of research and experiments. The main content of this paper is the control strategy and capacity optimization of hybrid energy storage system in new energy generation system. In this paper, the performance of each energy storage element is compared and analyzed in detail, and the topological structures of several hybrid energy storage devices are introduced respectively. The structure of hybrid energy storage system from supercapacitor and battery connected to AC bus by bidirectional DC/AC converter is determined. A dynamic control strategy for hybrid energy storage system based on bi-directional DC/AC converter is proposed to solve the power fluctuation problem of wind and photovoltaic grid-connected power generation systems. For the hybrid energy storage system with supercapacitor and battery bank, a double closed loop controller structure is established to control the voltage and current in the converter, and to distribute the fluctuating current component to the supercapacitor. And allow the battery to respond to fluctuating current components that change more slowly. The charging state of the battery is controlled based on the extended Kalman filter method, and the charging state value is stabilized within the safe range, thus prolonging the battery's service life. The effectiveness of the hybrid energy storage control method is verified by Matlab simulation. Based on the excellent complementarities of supercapacitors and batteries, the optimal configuration of the capacity of hybrid energy storage system in the solar complementary generation system is studied, and the calculation flow of the load power shortage rate of the system is analyzed in detail. Based on the whole life cycle cost theory, the capacity optimization objective function of hybrid energy storage is established, and the reliability index such as load power shortage rate of new energy generation system is taken as the constraint condition of the optimization problem. Standard and improved particle swarm optimization algorithms are used to solve the problem. In the Matlab simulation software, the simulation results show that the optimal configuration can reduce the cost of hybrid energy storage system while satisfying the reliability of power supply.
【学位授予单位】:东北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM53;TM912
【参考文献】
相关期刊论文 前10条
1 杨志超;李晓健;陆文伟;马寿虎;周宇浩;;基于主元分析法的高压断路器全寿命周期成本研究[J];电测与仪表;2017年01期
2 刘舒;李正力;王翼;马瑞;陆丹;刘皓明;;含分布式发电的微电网中储能装置容量优化配置[J];电力系统保护与控制;2016年03期
3 杨国华;朱向芬;马玉娟;韩世军;王金梅;王鹏珍;;基于改进粒子群算法的混合储能系统容量优化[J];电测与仪表;2015年23期
4 张蕴昕;孙运全;;混合储能在风光互补微网中的控制策略[J];电力系统保护与控制;2015年21期
5 肖浩;裴玮;杨艳红;齐智平;孔力;;计及电池寿命和经济运行的微电网储能容量优化[J];高电压技术;2015年10期
6 周天沛;孙伟;;风光互补发电系统混合储能单元的容量优化设计[J];太阳能学报;2015年03期
7 高尚;祁新春;谢涛;徐震;;共直流母线光伏-混合储能发电系统及其双重滤波优化控制[J];电力系统保护与控制;2014年20期
8 张峰;董晓明;梁军;韩学山;孙舶皓;王洪涛;;考虑目标分解及其互补平抑的风电场复合储能容量优化[J];电力系统自动化;2014年07期
9 桑丙玉;陶以彬;郑高;胡金杭;俞斌;;超级电容-蓄电池混合储能拓扑结构和控制策略研究[J];电力系统保护与控制;2014年02期
10 罗星;王吉红;马钊;;储能技术综述及其在智能电网中的应用展望[J];智能电网;2014年01期
相关博士学位论文 前2条
1 曾杰;可再生能源发电与微网中储能系统的构建与控制研究[D];华中科技大学;2009年
2 张慧妍;超级电容器直流储能系统分析与控制技术的研究[D];中国科学院研究生院(电工研究所);2006年
相关硕士学位论文 前6条
1 李达;风电场中混合储能系统的应用研究[D];华北电力大学(北京);2016年
2 王宇;超级电容与蓄电池混合储能系统的能量管理与控制研究[D];哈尔滨工业大学;2016年
3 苗骁健;混合储能系统的控制策略与容量优化研究[D];山东大学;2015年
4 李朝东;微电网混合储能系统控制策略研究[D];哈尔滨工业大学;2014年
5 朱向芬;基于粒子群算法的混合储能系统容量优化配置[D];宁夏大学;2014年
6 程莎莎;基于混合储能装置的风光互补发电系统[D];长沙理工大学;2014年
,本文编号:1945768
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1945768.html