LED灯具散热结构正交优化设计与实验研究
发布时间:2018-05-28 21:18
本文选题:散热 + 正交试验 ; 参考:《华侨大学》2016年硕士论文
【摘要】:随着LED产业蓬勃发展,各行各业的传统光源灯具逐渐被LED灯具取代。但是,研究表明:当LED工作时,注入电功率的绝大部分都转变成了热能,若这些热量无法被及时散去,则会出现性能下降,寿命降低等问题。因此,本硕士论文主要研究三种LED灯具(LED塑包铝球泡灯、高功率COB光源和LED汽车前大灯)的散热性能并进行优化与实验验证。针对目前LED塑包铝球泡灯散热器优化缺乏理论指导的问题,提出基于正交试验的散热器设计方法。首先通过对比三种LED球泡灯(全铝、塑包铝和全塑)的散热,得出LED塑包铝球泡灯具有一定优势。然后,提出利用正交试验对决定散热性能的五个因素(塑料厚度、铝厚度、散热器高度、铝底板厚度和底边直径)进行优化设计,通过极差分析得到最优参数组合。最后,通过制图软件SolidWorks创建结构模型,导入基于有限元理论的FloEFD软件进行模拟仿真。结果表明:LED温度由原来的96.05℃降为88.85℃,下降了7.2℃,散热效果得到明显改善。针对解决高功率COB光源热流密度和热量更加集中等问题进行了理论分析与实验验证。通过对比未安装翅片散热器和安装散热翅片结构的热仿真结果得出后者的散热性能明显好于前者。接着,采用正交试验对散热翅片进行优化设计,得到最优散热结构的参数组合。仿真结果表明:经过正交试验优化后,温度为74.73℃,大大提高了整体结构的散热性能。最后,采用红外热像仪(IRS S65)测试翅片优化前后的温度进行对比发现:实验和模拟仿真结果一致。此外,还研究了固晶胶和导热胶导热系数对该结构温度的影响,为以后继续改善散热性能提供了方向。针对LED运用于汽车前大灯所面临的散热问题,提出一款新型的LED汽车前大灯散热结构,将无叶风扇运用于散热器的设计中。在SolidWorks建立模型并导入FloEFD软件进行模拟仿真。与此同时,提出了两种改进方案(通风管填充矩形翅片和蜂窝结构)。针对散热效果较好的方案二采用正交试验优化分析了蜂窝类型、等效直径、蜂窝壁厚、填充蜂窝长度和通风管长度对该散热系统散热性能的影响,最终得出了系统模型结构的最佳参数组合,仿真结果表明:经过正交试验优化后LED汽车前大灯的温度为75.17℃。最后,针对该结构,讨论温度同风速的关系并得到了相应的表达式,可为后续无叶风扇的选型等研究提供一定的参考。
[Abstract]:With the rapid development of LED industry, traditional light lamps in various industries are gradually replaced by LED lamps. However, it is shown that most of the injected electric power is transformed into heat energy when LED is working. If the heat can not be dissipated in time, the performance will be decreased and the life will be reduced. Therefore, the heat dissipation performance of three kinds of LED lamps, high power COB lamps and LED headlamps are studied and optimized and verified by experiments. Aiming at the lack of theoretical guidance to optimize the radiator of LED plastic-coated aluminum bulb lamp, the design method of radiator based on orthogonal test is proposed. Firstly, by comparing the heat dissipation of three kinds of LED bulb lamps (all aluminum, plastic coated aluminum and all plastic), it is concluded that LED plastic coated aluminum bulb lamps have some advantages. Then, the optimum design of five factors (plastic thickness, aluminum thickness, radiator height, aluminum bottom thickness and bottom diameter) which determines the heat dissipation performance by orthogonal test is proposed, and the optimal parameter combination is obtained by means of range analysis. Finally, the structure model is created by SolidWorks, and the FloEFD software based on finite element theory is introduced to simulate the model. The results showed that the temperature of the weight LED decreased from 96.05 鈩,
本文编号:1948222
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1948222.html