超级电容器—蓄电池混合储能系统容量优化配置方法研究
发布时间:2018-05-31 22:49
本文选题:超级电容器-蓄电池混合储能系统 + 分界频率 ; 参考:《华北电力大学》2017年硕士论文
【摘要】:为了在大功率脉动负荷系统中实现能源的回收利用,达到“降本增效,节能减排”的目的;为了平滑光伏发电系统输出的不稳定功率,平抑自然环境因素和负载波动因素带来的扰动,提高光伏发电系统的电能质量和并网安全稳定性,改善光伏发电系统的稳定运行特性,引入储能技术成了必然趋势,所以对储能技术的研究具有重要意义。本文提出一种超级电容器-蓄电池混合储能系统容量优化配置的计算方法。首先将系统不平衡功率进行经验模态分解,获得高频功率分量和低频功率分量,充分发挥超级电容器循环寿命高、功率密度大和蓄电池能量密度大的优点,由超级电容器负责高频功率分量,蓄电池承担低频功率分量;然后在混合储能系统全生命周期成本的目标函数里考虑变流器的运行方式与成本,将其作为独立的个体参与混合储能容量配置计算,使得计算结果更准确;最后根据能量损失率和能量缺失率两个约束指标采用遗传算法对目标函数求解。本文将所提出的超级电容器-蓄电池混合储能系统容量优化配置的方法应用到大功率脉动负荷所在系统、独立光伏发电系统和统购统销模式并网光伏发电系统中。首先介绍三种系统的结构和工作原理,明确混合储能系统的作用,然后在不同的系统中建立超级电容器-蓄电池混合储能系统容量优化模型,并对实例进行计算。通过算例结果分析,本文提出的超级电容器-蓄电池混合储能系统在三种不同的系统中起到了重要的作用,改善了三种系统的工作状态:大功率脉动负荷系统中,混合储能系统避免了电能的大量浪费,减轻了环境污染;独立光伏系统中,混合储能可以有效平抑功率波动、稳定直流母线的电压、提高光伏电能质量;统购统销模式并网光伏发电系统中,合理利用了电能资源提高整个系统的经济性。本文所提方法可以充分发挥超级电容器和蓄电池的优势,实现运行系统的经济性,相对于不考虑变流器成本的模型,本方法容量配置计算更加全面。
[Abstract]:In order to realize the recovery and utilization of energy in the high-power pulsating load system, to achieve the goal of "reducing cost and increasing efficiency, saving energy and reducing emissions", and to smooth the unstable power output of photovoltaic power generation system, It is an inevitable trend to stabilize the disturbance caused by natural environment and load fluctuation factors, to improve the power quality of photovoltaic power system and the safety and stability of grid connection, to improve the stable operation characteristics of photovoltaic power generation system, and to introduce energy storage technology. Therefore, the study of energy storage technology is of great significance. In this paper, a calculation method for capacity optimization of supercapacitor-battery hybrid energy storage system is presented. Firstly, the unbalanced power of the system is decomposed into empirical mode to obtain the high frequency power component and the low frequency power component. The advantages of high cycle life, high power density and high battery energy density of the supercapacitor are brought into full play. The supercapacitor is responsible for the high-frequency power component and the battery takes the low-frequency power component. Then the operation mode and cost of the converter are considered in the objective function of the full life cycle cost of the hybrid energy storage system. Taking it as an independent individual to participate in the calculation of mixed energy storage capacity, the result is more accurate. Finally, the objective function is solved by genetic algorithm according to the two constraint indexes of energy loss rate and energy loss rate. In this paper, the proposed method of optimizing the capacity of hybrid energy storage system of supercapacitors and batteries is applied to the system of high-power pulsating load, the independent photovoltaic power generation system and the grid-connected photovoltaic power generation system in the mode of monopoly purchase. Firstly, the structure and working principle of the three systems are introduced, and the function of the hybrid energy storage system is clarified. Then, the capacity optimization model of the supercapacitor-battery hybrid energy storage system is established in different systems, and an example is calculated. Through the analysis of the results of numerical examples, the supercapacitor-battery hybrid energy storage system proposed in this paper plays an important role in three different systems, and improves the working state of the three systems: the high-power pulsating load system. In the independent photovoltaic system, the hybrid energy storage system can effectively stabilize the power fluctuation, stabilize the voltage of DC bus, and improve the quality of photovoltaic power. In the grid-connected photovoltaic power generation system, the power resources are used reasonably to improve the economy of the whole system. The method proposed in this paper can give full play to the advantages of supercapacitors and batteries and realize the economy of the operation system. Compared with the model without considering the cost of the converter, the capacity configuration calculation of this method is more comprehensive.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM53;TM912
【参考文献】
相关期刊论文 前10条
1 黄幼平;;风力和太阳能光伏发电现状及发展趋势[J];科技展望;2015年36期
2 栗然;党磊;董哲;周鸿鹄;;分时电价与风储联合调度协调优化的主从博弈模型[J];电网技术;2015年11期
3 刘治理;;四川上网侧分时电价政策实施效果分析[J];中国电力企业管理;2015年17期
4 王琪;孙玉坤;黄永红;;应用于脉冲电流负载的复合电源设计[J];浙江大学学报(工学版);2015年08期
5 孙承晨;袁越;San Shing CHOI;李梦婷;张新松;曹阳;;基于经验模态分解和神经网络的微网混合储能容量优化配置[J];电力系统自动化;2015年08期
6 肖兴志;李少林;;光伏发电产业的激励方式、他国观照与机制重构[J];改革;2014年07期
7 肖峻;张泽群;张磐;梁海深;王成山;;用于优化微网联络线功率的混合储能容量优化方法[J];电力系统自动化;2014年12期
8 马速良;蒋小平;马会萌;吴振威;;平抑风电波动的混合储能系统的容量配置[J];电力系统保护与控制;2014年08期
9 邢相军;邓潇s,
本文编号:1961657
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1961657.html