基于磁耦合谐振的无线传能系统设计与实现
本文选题:磁耦合谐振式 + 频率跟踪 ; 参考:《重庆大学》2016年硕士论文
【摘要】:磁耦合谐振式无线能量传输是近十年新兴的中等距离电能传输技术,利用磁场在电感线圈中的共振耦合,实现传输功率和距离的提高。由于传输距离、功率、成本和灵活性的优势,磁耦合谐振技术已成为无线能量传输领域的研究热点。现有研究表明,磁耦合谐振系统在耦合系数较高时存在严重的频率分裂现象,激励源频率成为制约功率提高的重要因素。收发线圈之间的距离具有随机性的特点,难以保证负载接收功率和额定功率的吻合。本文将从理论上分析最佳频率的偏移规律和功率的衰减特性,提出相应的频率跟踪和功率控制策略。频率跟踪方面,本文利用互感理论对串联型谐振回路进行建模,分析最佳频率点随耦合系数的变化规律。当系统处于过耦合状态时,由于收发回路的阻抗特性发生变化,系统的最大功率传输频率点向固有频率两侧偏移,且发送回路在该频率点仍将保持谐振状态。因此,跟踪发送回路谐振频率的偏移,可以实现过耦合状态下的功率提高。结合罗耶振荡器的工作原理,系统采用改进的罗耶电路实现频率跟踪、电压逆变和共振耦合功能。功率控制方面,在线圈的感应范围内,系统传输功率总是随距离的增加而迅速衰减。为保证负载接收功率和额定功率的一致性,本文在收发两端建立通信链路,通过接收状态的实时监控和反馈调节,保证接收功率的稳定和准确。由于电感线圈的谐振电压、磁通量的变化率和感应电压存在正比关系,本文提出利用升压电路进行功率控制的策略。为了适应升压电路的要求,系统采用比例-积分-微分调节器来控制罗耶振荡电路的输入电压,从而达到调节传输功率的目的。基于电路理论的分析和仿真结果,本文搭建一套完整的磁耦合谐振式无线能量传输装置并进行测试。结果表明,该装置可以在12cm距离内实现5W稳定功率的传输。
[Abstract]:Magnetic coupling resonant wireless energy transmission is a new medium distance power transmission technology in recent ten years. By using the resonance coupling of magnetic field in inductance coil, the transmission power and distance can be improved. Due to the advantages of transmission distance, power, cost and flexibility, magnetically coupled resonance technology has become a hot topic in the field of wireless energy transmission. The current studies show that the frequency splitting phenomenon of the magnetically coupled resonance system is serious when the coupling coefficient is high and the frequency of the excitation source is an important factor restricting the power increase. The distance between the receiving and transmitting coils is random, so it is difficult to match the load receiving power with the rated power. In this paper, the migration law of optimal frequency and the attenuation characteristics of power are analyzed theoretically, and the corresponding frequency tracking and power control strategies are proposed. In the aspect of frequency tracking, the mutual inductance theory is used to model the series resonant loop, and the variation law of the optimal frequency point with the coupling coefficient is analyzed. When the system is in an over-coupled state, the maximum power transmission frequency of the system deviates to both sides of the natural frequency due to the change of the impedance characteristics of the transceiver loop, and the transmission loop will remain resonant at this frequency point. Therefore, tracking the offset of the resonant frequency of the transmission loop can improve the power in the over-coupling state. Combined with the working principle of Royer oscillator, the system adopts the improved Loyer circuit to realize frequency tracking, voltage inversion and resonance coupling. In power control, in the inductive range of the on-line loop, the transmission power of the system always decreases rapidly with the increase of the distance. In order to ensure the consistency of load receiving power and rated power, this paper establishes a communication link at both ends of the receiving and transmitting stations, and ensures the stability and accuracy of the received power by real-time monitoring and feedback adjusting of the receiving state. Because the resonant voltage of inductance coil and the rate of change of magnetic flux are proportional to the inductive voltage, a power control strategy using boost circuit is proposed in this paper. In order to meet the requirements of the boost circuit, the proportional integral differential regulator is used to control the input voltage of the Loyer oscillating circuit, so as to adjust the transmission power. Based on the analysis of circuit theory and simulation results, a complete set of magnetic coupling resonant wireless energy transmission device is built and tested. The results show that the device can transmit 5 W stable power within 12cm distance.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TM724
【参考文献】
相关期刊论文 前10条
1 刘喜声;马殿光;唐厚君;;磁耦合谐振式无线电能传输系统频率特性分析[J];电力电子技术;2014年11期
2 骆彦廷;杨拥民;陈仲生;;磁耦合谐振式无线电能传输系统建模与分析[J];中国集成电路;2013年08期
3 李凤娥;牛王强;;对称串联型非接触电能传输系统频率分裂现象的频域分析[J];上海海事大学学报;2013年01期
4 李阳;杨庆新;闫卓;张超;陈海燕;张献;;无线电能有效传输距离及其影响因素分析[J];电工技术学报;2013年01期
5 赵争鸣;张艺明;陈凯楠;;磁耦合谐振式无线电能传输技术新进展[J];中国电机工程学报;2013年03期
6 汤伟;杨瑞霞;郭志涛;顾军华;;一种高Q值的谐振式无线能量传输技术的应用[J];电工电能新技术;2012年04期
7 黄吉金;黄珊;;微波能量传输技术及其应用发展方向[J];微波学报;2012年S2期
8 郑新卿;;升压斩波电路的微分原理及应用分析[J];数字技术与应用;2011年09期
9 高奇峰;杨兆建;何吉利;;分离式变压器电磁结构与参数分析[J];电力自动化设备;2009年09期
10 王威;杨平;;智能PID控制方法的研究现状及应用展望[J];自动化仪表;2008年10期
相关博士学位论文 前1条
1 李阳;大功率谐振式无线电能传输方法与实验研究[D];河北工业大学;2012年
相关硕士学位论文 前5条
1 修自任;无线能量传输的非线性现象研究[D];电子科技大学;2015年
2 董苗苗;磁耦合谐振式无线电能传输的研究[D];华北电力大学;2014年
3 史继翠;磁耦合谐振式无线电能传输系统建模及优化分析[D];湘潭大学;2013年
4 任立涛;磁耦合谐振式无线能量传输功率特性研究[D];哈尔滨工业大学;2009年
5 毛赛君;非接触感应电能传输系统关键技术研究[D];南京航空航天大学;2006年
,本文编号:1976803
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1976803.html