计及电压质量的配电网无功优化研究
本文选题:配电网 + 无功优化 ; 参考:《济南大学》2017年硕士论文
【摘要】:随着当代技术的不断革新以及经济的高速增长,人们的生活水平得到了极大的提高,随之而来的是社会各行各业对电能的需求量日益增加,同时对供电质量和安全性的要求也在不断提高。电压作为衡量电能质量的重要指标之一,直接影响着电力系统安全稳定的运行,而且随着用电负荷的飞速增长,导致很多地区的电压不满足国家标准值,甚至会出现用电设备无法正常工作的情况。影响电压质量的主要原因是系统提供的无功功率不足或无功功率分布不合理。因此,在配电网中合理的配置无功补偿装置及时就地补充无功功率,保障网络中无功功率的平衡,提高电压质量从而保证电力系统安全的运行,同时提高电网运行的经济性显得很重要。本文在分析了传统无功补偿点选择方法存在不足的基础上,提出把聚类算法和功率矩方法结合来选择无功补偿。首先根据网络拓扑结构建立关联矩阵,然后对高维矩阵进行降维处理以便于在聚类操作时减少计算量节省计算时间,聚类过程是将整个网络根据电气距离来划分成几个子区域,接着在每个子区域中采用功率矩公式计算负荷中心以确定补偿点的位置。这样选择补偿点可以有效避免传统方法选择补偿点过于集中的缺陷,能够更好地实现无功分散补偿就地平衡。补偿点位置确定后如何求解相应补偿容量,本文在对比分析传统数学优化方法和现代人工智能优化算法的优缺点后,选择了粒子群优化算法,并基于粒子群算法本身存在的计算后期易陷入局部极值的缺点提出改进策略,主要对粒子群算法中的惯性权重和学习因子这两个参数进行了研究分析,以及在算法迭代计算后期加入了遗传算法中的交叉操作过程,依据粒子的适应度值大小排序并将种群分成两部分,好的部分继续按原计划继续搜寻,不好的部分内粒子之间进行交叉操作产生新粒子,增加了粒子种群在迭代计算后期的多样性,改善了算法性能。针对部分较为落后的农村长线路,在仅通过补偿无功而不能有效解决线路末端低压问题的情况下,考虑在线路上安装自动调压器来提升线路电压,通过同时配置无功补偿器和自动调压器,在提升电压质量、降低线路损耗以及增加投资收益等多方面效果显著。以IEEE-33节点系统和66节点实际农村配电线路为例进行编程仿真,与其他方法的计算结果对比分析,验证了本文方法的正确性和有效性。
[Abstract]:With the continuous innovation of modern technology and rapid economic growth, people's living standards have been greatly improved, followed by the increasing demand for electricity in various sectors of society. At the same time, the quality of power supply and security requirements are also constantly improving. Voltage, as one of the important indexes to measure power quality, directly affects the safe and stable operation of power system, and with the rapid increase of power load, the voltage in many areas does not meet the national standard. Even electrical equipment will not work properly. The main reason of affecting voltage quality is that the reactive power provided by the system is insufficient or the distribution of reactive power is unreasonable. Therefore, the reasonable allocation of reactive power compensator in distribution network can ensure the balance of reactive power in the network, improve the voltage quality and ensure the safe operation of power system. At the same time, it is very important to improve the economy of power grid operation. Based on the analysis of the shortcomings of the traditional reactive power compensation point selection method, this paper proposes a new method to select reactive power compensation by combining the clustering algorithm with the power moment method. First of all, the correlation matrix is established according to the network topology, and then the high-dimensional matrix is reduced to reduce the amount of computation and save the computing time. The whole network is divided into several sub-regions according to the electrical distance in the clustering process. Then the power moment formula is used to calculate the load center in each sub-region to determine the position of the compensation point. In this way, the traditional method can avoid the defect that the compensation points are too centralized, and the local balance of reactive power dispersion compensation can be better realized. After determining the position of compensation points, how to solve the corresponding compensation capacity, after comparing and analyzing the advantages and disadvantages of traditional mathematical optimization method and modern artificial intelligence optimization algorithm, the particle swarm optimization algorithm is selected. Based on the shortcomings of particle swarm optimization (PSO), which is easy to fall into local extremum in the later stage of computation, an improved strategy is put forward. The inertia weight and learning factor of PSO are studied and analyzed. In addition, the cross-operation process of genetic algorithm is added in the late iterative computation of the algorithm. The population is sorted according to the fitness value of the particle and the population is divided into two parts. The good part continues to search according to the original plan. The poor cross operation between the particles in some parts produces new particles, which increases the diversity of particle population in the late iterative computation and improves the performance of the algorithm. In view of some backward rural long lines, considering the installation of automatic voltage regulator to raise the line voltage, the problem of low voltage at the end of the line can not be effectively solved by compensating reactive power. By configuring reactive power compensator and automatic voltage regulator at the same time, it can improve voltage quality, reduce line loss and increase investment income. Taking IEEE-33 node system and 66-bus actual rural distribution line as examples, the correctness and validity of this method are verified by comparing and analyzing the calculation results of other methods.
【学位授予单位】:济南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM714.3
【参考文献】
相关期刊论文 前10条
1 李晓东;;基于人工神经网络的配网自动化故障定位问题研究[J];中国电力教育;2013年26期
2 郑建华;张庆磊;王宝华;;馈线自动调压器设计方法研究[J];电子设计工程;2012年24期
3 汪凤月;汪芳宗;胡佳怡;;基于序列二次规划法的分布式电源优化配置研究[J];计算技术与自动化;2012年03期
4 张庭场;耿光飞;;基于改进粒子群算法的中压配电网无功优化[J];电网技术;2012年02期
5 王韶;周鑫;;应用层次聚类法和蚁群算法的配电网无功优化[J];电网技术;2011年08期
6 于晓牧;王继峰;翟晓凡;贺孚威;;中压线路调压器的应用[J];农村电气化;2011年01期
7 魏希文;邱晓燕;李兴源;张子健;;含风电场的电网多目标无功优化[J];电力系统保护与控制;2010年17期
8 韩新华;赵琰;邓玮;;电力系统无功优化模型与算法的研究与发展[J];东北电力技术;2010年04期
9 张斌;;基于粒子群算法的配电网无功补偿优化规划[J];电力系统及其自动化学报;2010年02期
10 林旭义;黄伟君;;含小水电的10kV线路电压质量改善新途径[J];浙江电力;2010年02期
相关博士学位论文 前3条
1 谭东明;农村配电网无功优化智能技术研究[D];沈阳农业大学;2011年
2 于佳;配电网规划优化方法的研究[D];沈阳农业大学;2008年
3 张文;基于粒子群体优化算法的电力系统无功优化研究[D];山东大学;2006年
相关硕士学位论文 前10条
1 郑诗昱;基于粒子群算法含分布式电源的配电网无功优化研究[D];沈阳农业大学;2016年
2 李宗圃;面向智能电网的配电网多目标动态无功优化研究[D];华北电力大学(北京);2016年
3 李兴;基于灵敏度分析和进化策略法的配电网无功规划[D];华北电力大学;2014年
4 詹萌萌;基于改进混沌遗传算法的配电网无功优化[D];杭州电子科技大学;2014年
5 王希;基于动态云进化粒子群算法的含风电场配电网无功优化[D];上海交通大学;2014年
6 武鲁晓;改进粒子群算法在电力系统无功优化中的应用[D];山东大学;2012年
7 冯超;配电网无功补偿容量优化配置[D];华南理工大学;2011年
8 王晓晨;基于改进粒子群算法的电力系统无功优化[D];天津大学;2010年
9 燕霞;基于多维标度技术的中国地区社会经济发展分析[D];华南理工大学;2010年
10 郭丽蕊;基于双种群改进蚁群算法的配电网无功优化的研究[D];河北农业大学;2009年
,本文编号:1980780
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1980780.html