当前位置:主页 > 科技论文 > 电气论文 >

风氢耦合系统容量配比及能量管理策略研究

发布时间:2018-06-07 22:21

  本文选题:风氢耦合系统 + 区间拟合 ; 参考:《东北电力大学》2017年硕士论文


【摘要】:风电作为目前开发和应用较为广泛的可再生能源之一,其发展速度较为迅速。风电富集地区由于电网建设水平和风电不确定性等因素的影响,使风电消纳问题日益突出,弃风问题也越来越严重,利用风电制氢是消纳风电和利用弃风的有效途径之一。本文在分析风氢耦合系统结构和各部分运行特性基础上,建立系统各单元等效数学模型,通过对风电富集地区风电场和风电场群年弃风电力的统计分析,运用区间拟合方法构建了反映弃风电力不确定性的制氢系统最优容量配置模型,并采用多属性决策方法制定电解槽配置方案;分析电解槽电耗量、氢气市场价格以及弃风利用率和风电机组年利用小时数对容量配置的影响,分别以装机容量为30MW风电场和100MW风电场群为例进行对比分析,验证了所提模型和方法的有效性。在风氢耦合系统的能量管理方面,针对风氢耦合系统运行特点,借鉴能源中心(Energy Hub,EH)建模方法,构建了资源中心(Resource Hub,RH)模型,从不同时间尺度优化系统能量管理。在日前时间尺度下,以风氢耦合系统运行经济性最优为目标,考虑风电功率的不确定性、供氢需求及氢储等约束,构建风氢耦合系统日前调度的线性规划模型;在实时时间尺度下,建立以电解槽开关操作和运行状态为变量的0-1整数规划模型,配合超级电容器实现平抑风电功率波动,以30MW风电场为例验证了所提方法的有效性。通过对风电富集地区风电场配置制氢系统最优容量的计算分析,制氢系统容量配置具有明显的规模效应,即弃风量越大制氢系统消纳风电的效果越明显,其经济效益和环境效益越高。运用日前调度优化模型,可在满足风氢耦合系统供氢需求的前提下,通过合理安排燃料电池出力使其在一定程度降低风电场并网功率的不确定性;在实时时间尺度下,通过优化电解槽开关操作和超级电容器充放电功率,在满足电解槽开关动作次数和运行时间的前提下,实现了对实时时间尺度下风电功率波动的平抑。
[Abstract]:Wind power, as one of the most widely used renewable energy sources, is developing rapidly. Due to the influence of factors such as power grid construction level and wind power uncertainty, the problem of wind power absorption is increasingly prominent and the problem of wind rejection is becoming more and more serious in the area of wind power enrichment. The use of wind power to produce hydrogen is one of the effective ways to absorb wind power and make use of abandoned wind. Based on the analysis of the structure of the wind and hydrogen coupling system and the operation characteristics of each part, the equivalent mathematical model of each unit of the system is established, and the statistical analysis of the wind farm and wind farm group in the area of wind power enrichment is carried out. The optimal capacity allocation model of hydrogen production system reflecting the uncertainty of abandoned wind power is constructed by using interval fitting method, and the configuration scheme of electrolytic cell is established by using multi-attribute decision method, and the power consumption of electrolytic cell is analyzed. The effects of the market price of hydrogen, the utilization ratio of abandoned wind and the number of hours of annual utilization of wind turbine on capacity allocation are compared and analyzed respectively, taking the installed capacity of 30 MW wind farm and 100 MW wind farm as examples, the validity of the proposed model and method is verified. In the aspect of energy management of air-hydrogen coupling system, according to the operational characteristics of air-hydrogen coupling system, a Resource Center Resource Hub-RH (RH) model is constructed to optimize the energy management of the system at different time scales, based on the energy center energy Hub-EH modeling method. Under the pre-day time scale, the linear programming model of the air-hydrogen coupling system pre-day scheduling is constructed by considering the uncertainty of wind power, the demand for hydrogen supply and the constraints of hydrogen storage, aiming at the optimal operation economy of the air-hydrogen coupling system. In the real-time scale, a 0-1 integer programming model based on the switching operation and operating state of the electrolytic cell is established, and the wind power fluctuation is suppressed by supercapacitors. The effectiveness of the proposed method is verified by an example of a 30MW wind farm. Through the calculation and analysis of the optimal capacity of the wind farm configuration hydrogen production system in the area of wind power enrichment, the capacity configuration of the hydrogen production system has obvious scale effect, that is, the larger the abandoned air volume, the more obvious the wind power absorption effect of the hydrogen production system is. Its economic benefit and environmental benefit are higher. By using the pre-day scheduling optimization model, under the premise of satisfying the demand for hydrogen supply in the air-hydrogen coupling system, it can reduce the uncertainty of the grid power of the wind farm to a certain extent by reasonably arranging the output of the fuel cell, and in the real-time scale, By optimizing the switching operation of the electrolytic cell and the charging and discharging power of the supercapacitor, the fluctuation of the wind power under the real-time scale can be controlled under the premise of satisfying the operation times and the running time of the electrolytic cell switch.
【学位授予单位】:东北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM614;TM73

【参考文献】

相关期刊论文 前10条

1 李杨;刘伟佳;赵俊华;文福拴;董朝阳;郑宇;张睿;;含电转气的电-气-热系统协同调度与消纳风电效益分析[J];电网技术;2016年12期

2 袁铁江;段青熙;秦艳辉;张增强;梅生伟;;风电 氢储能与煤化工多能耦合系统能量广域协调控制架构[J];高电压技术;2016年09期

3 郭慧;汪飞;张笠君;罗建;;基于能量路由器的智能型分布式能源网络技术[J];中国电机工程学报;2016年12期

4 王业磊;赵俊华;文福拴;薛禹胜;;具有电转气功能的多能源系统的市场均衡分析[J];电力系统自动化;2015年21期

5 徐宪东;贾宏杰;靳小龙;余晓丹;穆云飞;;区域综合能源系统电/气/热混合潮流算法研究[J];中国电机工程学报;2015年14期

6 贾宏杰;王丹;徐宪东;余晓丹;;区域综合能源系统若干问题研究[J];电力系统自动化;2015年07期

7 时t熇,

本文编号:1993009


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1993009.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户65b67***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com