基于掺杂改性的氧化镍空穴传输层制备平面反向钙钛矿太阳能电池及其性能研究
本文选题:钙钛矿太阳能电池 + NiO_x薄膜 ; 参考:《南昌大学》2017年硕士论文
【摘要】:近年来,基于有机-无机杂化钙钛矿材料(ABX_3,A=Cs~+,CH_3NH_3~+(MA~+),NH=CHNH_3+(FA~+);B=Pb_2~+;X=Cl~-,Br~-,I~-)为光活性层构建的钙钛矿太阳能电池由于集吸光系数高、缺陷密度低、激子束缚能低、载流子扩散距离长,以及成本低、光电转换率高等优点于一身,而成为新型光伏技术研究领域中的一颗“新星”,其中平面反向钙钛矿太阳能电池因其制备工艺相对简单成为研究热点。在平面反向钙钛矿太阳能电池中,空穴传输材料对于器件效率和稳定性起着非常重要的作用,氧化镍(NiO_x)空穴传输材料因其化学稳定性好、制备的器件效率高越来越受到研究人员的关注。基于NiO_x空穴传输材料制备的钙钛矿太阳能电池具备良好的光电性能,主要原因在于相比于其他材料,Ni O_x的价带能级与钙钛矿更为匹配,从而器件开路电压较高。但是由于NiO_x自身的导电性不强,导致电池的短路电流以及填充因子较低,改善其导电性成为提高器件性能的首选方向。目前,掺杂是提高NiO_x导电性行之有效的办法之一。本文采用金属元素掺杂NiO_x薄膜,改善其导电性能,在此基础上,探究掺杂改性对NiO_x薄膜光学和电学性能的影响、讨论掺杂改性的NiO_x薄膜对钙钛矿薄膜微观形貌以及钙钛矿太阳能性能的影响,具体包括以下两个部分:首先,本论文制备了Ag掺杂的NiO_x薄膜(Ag:NiO_x),并以其作为空穴传输层,以甲胺铅碘(MAPbI_3)为活性层,制备出光电转换效率高且环境稳定性好的平面反向钙钛矿太阳能电池。结果表明,相比于纯NiO_x薄膜,当银掺杂量为2 at%时,能够有效提高NiO_x薄膜的透光性和空穴迁移率。同时,在2 at%Ag:NiO_x空穴传输层上制备的钙钛矿薄膜具有更好的结晶质量和更高的覆盖率,且其薄膜更为光滑,晶粒尺寸大。基于2 at%Ag:NiO_x空穴传输层制备的钙钛矿太阳能电池开路电压达到1.07 V,短路电流为19.70 mA/cm2,填充因子为80%,最高电池效率达到16.86%,而以纯NiO_x薄膜为空穴传输层制备的电池效率仅为13.46%。此外,相对于以有机空穴传输层和纯NiO_x薄膜空穴传输层制备的钙钛矿太阳能电池而言,基于Ag:NiO_x空穴传输层的电池具备较高的环境稳定性。其次,在上述工作的基础上,本论文进一步制备了Li、Ag共掺NiO_x薄膜(Li:Ag:NiO_x),以其为空穴传输层,以混合阳离子(MA0.9FA0.1PbI_3)有机-无机杂化钙钛矿为活性层制备出光电转换效率高且较高环境稳定性的平面反向混合阳离子钙钛矿太阳能电池。结果表明,相比于Ag:NiO_x薄膜,Li:Ag:NiO_x薄膜具有较高导电性能和透光性。在Li:Ag:NiO_x薄膜上制备的混合阳离子MA_(0.9)FA_(0.1)PbI_3钙钛矿薄膜均匀连续无孔洞,对光的吸收能力较强。与基于Ag:NiO_x空穴传输层制备的混合阳离子钙钛矿太阳能电池相比,基于Li:Ag:NiO_x空穴传输层制备的混合阳离子钙钛矿太阳能电池短路电流和填充因子有明显提高。此外,相对于以Ag:NiO_x薄膜空穴传输层制备的MAPb I3钙钛矿太阳能电池和基于Ag:NiO_x薄膜空穴传输层制备的MA_(0.9)FA_(0.1)PbI_3混合阳离子钙钛矿太阳能电池,基于Li:Ag:NiO_x空穴传输层制备的MA_(0.9)FA_(0.1)PbI_3混合阳离子钙钛矿太阳能电池具备更高的环境稳定性。本论文的开展为高效稳定平面反向钙钛矿太阳能电池提供了简单而有效的空穴传输材料体系。
[Abstract]:In recent years, the perovskite solar cells based on organic-inorganic hybrid perovskite materials (ABX_3, A=Cs~+, CH_3NH_3~+ (MA~+), NH=CHNH_3+ (FA~+), B=Pb_2~+; X=Cl~-, Br~-, I~-) have the advantages of high absorption light coefficient, low defect density, low exciton binding energy, long carrier diffusion distance, low cost and high photoelectric conversion rate. As a new star in the research field of new photovoltaic technology, the planar reverse perovskite solar cell has become a hot research topic because of its relatively simple preparation technology. In the plane reverse perovskite solar cell, hole transmission material plays a very important role in the efficiency and stability of the device, nickel oxide (NiO_x Because of the good chemical stability of the hole transmission material, the higher the efficiency of the device is due to the high efficiency of the device, the perovskite solar cell prepared based on the NiO_x hole transmission material has good photoelectric performance, the main reason is that the valence band of the Ni O_x is more matched with the perovskite than the other materials, thus the device opens. But because of the low electric conductivity of NiO_x, the short circuit current and filling factor of the battery are low. It is the first choice to improve the electrical conductivity of the device. At present, doping is one of the effective ways to improve the electrical conductivity of the NiO_x. This paper uses the metal elements doped NiO_x film to improve its conductivity. The effects of doping modification on the optical and electrical properties of NiO_x films were investigated, and the effects of doped NiO_x films on the micromorphology of Perovskite Thin Films and the performance of perovskite solar energy were discussed. The following two parts were included. First, the Ag doped NiO_x film (Ag:NiO_x) was prepared and used as a hole transport layer. A planar reverse perovskite solar cell with high photoelectric conversion efficiency and good environmental stability is prepared with methylamine lead iodine (MAPbI_3) as the active layer. The results show that compared with pure NiO_x film, when the amount of silver doping is 2 at%, the transmittance and hole migration rate of NiO_x film can be improved effectively. At the same time, it is prepared on the 2 at%Ag:NiO_x cavity transport layer. The perovskite thin film has better crystal quality and higher coverage, and its film is more smooth and the grain size is larger. The open circuit voltage of perovskite solar cell based on 2 at%Ag:NiO_x cavity transmission layer is 1.07 V, short circuit current is 19.70 mA/cm2, filling factor is 80%, the maximum battery efficiency is 16.86%, and the YISHION NiO_x film is The cell efficiency of the hole transmission layer is only 13.46%.. Compared with the perovskite solar cell prepared by the organic hole transport layer and the pure NiO_x film cavity transmission layer, the battery based on the Ag:NiO_x hole transmission layer has high environmental stability. Secondly, on the basis of the above work, the Li, Ag is further prepared in this paper. A planar reverse mixed cationic perovskite solar cell with high photoelectric conversion efficiency and high environmental stability was prepared with a Co doped NiO_x film (Li:Ag:NiO_x) as a cavity transmission layer and mixed cationic (MA0.9FA0.1PbI_3) organic-inorganic hybrid perovskite as active layer. The results showed that the Li:Ag:NiO_x film was compared with the Ag:NiO_x film. The mixed cation MA_ (0.9) FA_ (0.1) PbI_3 Perovskite Thin Film on the Li:Ag:NiO_x film is homogeneous and continuous without holes and has a stronger absorption capacity. Compared with the mixed cationic perovskite solar cell based on the Ag:NiO_x cavity transmission layer, the mixture based on the Li:Ag:NiO_x hole transmission layer is prepared. The short-circuit current and filling factor of Heyang ionic perovskite solar cells are obviously improved. In addition, the MA_ (0.9) FA_ (0.1) PbI_3 mixed cationic perovskite solar cell prepared from the MAPb I3 perovskite solar cell and the hole transmission layer based on the Ag:NiO_x film is prepared from the hole transport layer of the thin film, based on Li:Ag:NiO_x cavitation The MA_ (0.9) FA_ (0.1) PbI_3 mixed cationic perovskite solar cell prepared by the transmission layer has higher environmental stability. This paper provides a simple and effective cavity transmission material system for high efficiency and stable plane reverse perovskite solar cells.
【学位授予单位】:南昌大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM914.4
【相似文献】
相关期刊论文 前2条
1 徐维;乔日东;尚福军;;掺杂空穴传输层的有机电致发光器件性能研究[J];兵器材料科学与工程;2010年03期
2 连加荣;曾鹏举;;OLED器件空穴传输层中TPBI空穴阻挡层的应用研究[J];硅谷;2011年14期
相关会议论文 前1条
1 孙伟海;李云龙;叶森云;刘志伟;卞祖强;黄春辉;;溶液法制备的碘化亚铜作为聚合物电池中空穴传输层的研究[A];中国化学会第29届学术年会摘要集——第17分会:光电功能器件[C];2014年
相关博士学位论文 前10条
1 赵艳芳;纳米ZnO薄膜掺杂改性及其在太阳能电池中的应用研究[D];江苏大学;2017年
2 孔超;溶液法制备的空穴传输层和注入层对有机电致发光器件性能的影响[D];北京交通大学;2013年
3 吝青丽;有机空穴传输层表界面调控构筑高性能蓝紫色量子点发光二极管[D];辽宁大学;2017年
4 韩苗苗;铜基薄膜太阳能电池材料缺陷和光电性质的理论研究[D];中国科学技术大学;2017年
5 苏通裕;钙钛矿薄膜的结晶生长及界面层材料的研究[D];中国科学技术大学;2017年
6 王碧霄;纳米棒阵列基碳对电极无空穴传输层的钙钛矿太阳能电池研究[D];华中师范大学;2017年
7 胡中停;百叶型太阳能Trombe墙系统的性能分析与优化[D];中国科学技术大学;2017年
8 叶逸凡;同步辐射谱学技术在能源科学中的应用:聚合物太阳能电池和锂硫电池中的表界面研究[D];中国科学技术大学;2016年
9 高裕弟;新型有机电致发光器件及其载流子调控机理研究[D];清华大学;2004年
10 孙一灵;硅-PEDOT:PSS杂化太阳能电池制备及光伏性能研究[D];电子科技大学;2017年
相关硕士学位论文 前10条
1 魏荧;基于掺杂改性的氧化镍空穴传输层制备平面反向钙钛矿太阳能电池及其性能研究[D];南昌大学;2017年
2 路凯;基于元素直接反应的钙钛矿太阳能电池结构及器件性能研究[D];电子科技大学;2017年
3 李忱;PEDOT:PSS掺杂对平面钙钛矿太阳能电池性能调控研究[D];河南师范大学;2017年
4 李鹏伟;钙钛矿型太阳能电池的稳定性及大面积制备的研究[D];郑州大学;2017年
5 刘松子;银铜碘化物/钙钛矿共混太阳能电池器件与光电性能研究[D];郑州大学;2017年
6 陈秋杉;钙钛矿太阳能电池阳极界面及活性层的研究[D];宁波大学;2017年
7 刘星明;面向高效钙钛矿太阳能电池的器件制备及工艺优化[D];南京邮电大学;2017年
8 汪成新;基于界面工程优化钙钛矿型太阳能电池性能的研究[D];南京邮电大学;2017年
9 陈曦;GO/PEG用于界面修饰的钙钛矿太阳能电池研究[D];哈尔滨工业大学;2017年
10 王珏斌;光学结构在提高硅基太阳能电池性能中的应用[D];南京邮电大学;2017年
,本文编号:2025038
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2025038.html