音叉簧片式压电谐振腔风能回收装置研究
本文选题:风能回收 + 谐振腔 ; 参考:《合肥工业大学》2017年硕士论文
【摘要】:微电子、传感器以及无线通讯等领域的快速发展与融合,促使了无线传感网络技术的诞生,并在生态环境监测、建筑安全保障、军事侦察预警等领域发挥了重要的应用价值。然而,现有无线传感网络节点大多依赖电池供电,存在环境污染、寿命有限、充电和更换困难等问题,成为阻碍无线传感网络技术发展的主要因素。随着超低功耗电子技术的发展,无线传感网络节点的功耗可降低到毫瓦以下级别,使得回收周围环境中的微弱能量为传感节点供电成为可能。风能作为一种自然界广泛存在的可再生能源,开发微型化的风能回收装置并为偏远地区的无线传感网络节点供电,将会有广阔的应用前景。为了提高风能回收的效率,提升装置工作的稳定性,本文提出了一种音叉簧片式压电谐振腔风能回收装置,并完成了以下研究工作:(1)总结风致振动风能回收的基本结构原理和压电悬臂梁振动能量回收的基本理论,建立音叉簧片式压电谐振腔风能回收的理论基础。(2)对单簧片和双簧片谐振腔风能回收结构进行模态和流固耦合仿真分析,对比分析两个装置的振动形态、固有频率以及腔体气流作用规律。(3)制作单簧片和双簧片谐振腔风能回收装置样机,搭建实验测试平台,实验测试了关键结构、电学参量对回收能量的影响,并对比分析了两个原理样机的风能回收性能。实验结果表明:适宜的腔体、簧片尺寸匹配可获得较低的起振风速和较宽的风速范围;簧片安装方向对风能回收影响较小,簧片安装角度对起振风速、输出电压有较大的影响;音叉双簧片结构比单簧片结构具有更好的风能回收性能。腔体尺寸40×40×140mm~3的音叉簧片风能回收装置,在6m/s风速、0.15MΩ最优负载情况下,输出功率达到0.83m W,能量转换效率达到0.37%。综上所述,本文设计的音叉簧片式压电谐振腔风能回收装置具有良好的风能转化性能,可用于风能丰富的偏远地区无线传感网络节点供电。
[Abstract]:The rapid development and integration of microelectronics, sensors and wireless communication has promoted the birth of wireless sensor network technology, and has played an important role in ecological environment monitoring, building safety protection, military reconnaissance and early warning. However, most of the existing wireless sensor network nodes rely on battery power supply, environmental pollution, limited life, charging and replacement difficulties, become the main factors that hinder the development of wireless sensor network technology. With the development of ultra-low power electronic technology, the power consumption of wireless sensor network nodes can be reduced to less than milliwatt, which makes it possible to recover the weak energy in the surrounding environment to power the sensor nodes. Wind energy is a kind of renewable energy widely existing in nature. Developing miniature wind energy recovery device and supplying power to wireless sensor network nodes in remote areas will have a broad application prospect. In order to improve the efficiency of wind energy recovery and enhance the stability of the device, a tuning fork and Reed type piezoelectric resonator wind energy recovery device is proposed in this paper. The main works are as follows: (1) the basic structure principle of wind-induced wind energy recovery and the basic theory of vibration energy recovery of piezoelectric cantilever beam are summarized. The theoretical basis of wind energy recovery of tuning fork Reed piezoelectric resonator is established. (2) the modal and fluid-solid coupling simulation analysis of wind energy recovery structure of single Reed and double spring resonator is carried out, and the vibration patterns of the two devices are compared and analyzed. (3) the prototype of wind energy recovery device with single Reed and double spring resonator is made, and the experimental test platform is set up. The key structure and the effect of electrical parameters on the recovery energy are tested experimentally. The wind energy recovery performance of two principle prototypes is compared and analyzed. The experimental results show that the suitable cavity size matching can obtain lower starting wind speed and wider wind speed range, the direction of Reed installation has little effect on wind energy recovery, and the installation angle of Reed has great influence on the starting wind speed and output voltage. The tuning fork double spring structure has better wind energy recovery performance than the single Reed structure. With 40 脳 40 脳 140mm~3 tuning fork wind energy recovery device, under the optimal load of 0.15m 惟 of 6m/s wind speed, the output power reaches 0.83m Wand the energy conversion efficiency reaches 0.37m. In conclusion, the tuning fork and Reed piezoelectric resonator wind energy recovery device designed in this paper has good wind energy conversion performance and can be used to supply power to wireless sensor network nodes in remote areas with abundant wind energy.
【学位授予单位】:合肥工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM614
【参考文献】
相关期刊论文 前10条
1 曹自平;王楚;袁明;罗俊;张金娅;;环境能量采集技术的研究现状及发展趋势[J];南京邮电大学学报(自然科学版);2016年04期
2 白建华;辛颂旭;刘俊;郑宽;;中国实现高比例可再生能源发展路径研究[J];中国电机工程学报;2015年14期
3 刘成龙;孟爱华;陈文艺;李厚福;宋红晓;;振动能量收集技术的研究现状与发展趋势[J];装备制造技术;2013年12期
4 罗麒;;我国能源概况与能源消耗现状分析[J];商;2013年16期
5 何挺;马剑强;刘莹;李保庆;褚家如;;一种基于梯形压电悬臂梁的能量采集器研究[J];压电与声光;2012年06期
6 陈建明;梁妍;陈德慧;;基于太阳能的微能源收获技术[J];华北水利水电学院学报;2012年02期
7 张宏彬;;能源问题、环境污染与“节能减排”[J];改革与开放;2010年20期
8 何超;陈文革;;压电材料的制备应用及其研究现状[J];功能材料;2010年S1期
9 裴先茹;高海荣;;压电材料的研究和应用现状[J];安徽化工;2010年03期
10 李林;郭隐彪;陈旭远;;基于微机电系统的振动能量采集器件设计分析[J];机械工程学报;2009年09期
相关博士学位论文 前1条
1 刘慧媛;能源、环境与区域经济增长研究[D];上海交通大学;2013年
相关硕士学位论文 前5条
1 王晓;基于双分叉簧片和谐振腔结构的电磁式风能发电装置[D];中国科学技术大学;2014年
2 彭书涛;d_(31)模式悬臂梁压电换能器致动和俘能性能的理论分析[D];湘潭大学;2012年
3 杜志刚;基于谐振腔结构的微型风力发电机研究[D];重庆大学;2012年
4 许颖颖;悬臂梁压电发电装置的结构设计与研究[D];扬州大学;2012年
5 李雯;基于压电悬臂梁的环境振动能量获取方法的初步研究[D];天津大学;2008年
,本文编号:2057448
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2057448.html